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Abstract 

In alpine regions of Europe, river training works were typically the reason for the 

transformation of wide and braided rivers into linear river systems with a lack of structural 

diversity, i.e. gravel banks, islands, woody debris, riffles or pools. These interventions 

considerably impoverished river ecosystems. From the end of the 20th century, “river 

rehabilitation” has been a concept commonly used by environmental professionals and river 

management authorities. The rehabilitation purpose is to recover the vital space required for 

the rivers that were degraded by human interventions and to link the sustainable use of rivers 

and wetlands with human well-being. Furthermore the flood safety has to be adapted to the 

higher hydrological risk resulting from increased urbanization. A good understanding of the 

flow dynamics, sediment transport patterns and of the development of the bed morphology is 

essential to successfully accomplish river rehabilitation projects.  

Alpine confluences are typically characterized by steep gravel-bed streams carrying 

large sediment loads, which often connect asymmetrically at large angles with the main river. 

Such zones present important challenges, not only for flood protection but also for 

rehabilitation works. Current knowledge of river channel confluences, mainly based on 

lowland confluences is not applicable to alpine conditions.  

The morphodynamics of confluences have been experimentally investigated with 

special attention to the potential of local tributary widening in the framework of confluence 

rehabilitation projects. Local widening of the tributary in the confluence zone aims to increase 

the heterogeneity in sediment substrate, flow depth and flow velocity, which is favourable for 

in-stream habitat (e.g. aquatic invertebrates, fish, and vegetation) and for the connectivity 

between the main river and the tributary. Zones of quiescent water (flow stagnation or flow 

recirculation zones) may play an important role as refuges during flood events. Moreover, a 

local tributary widening can create a riparian zone which favours the diversity of plants and 

animals (e.g. birds, mammals, insects, amphibians). Obviously, river rehabilitation by means 

of local tributary widening is only feasible if it has negligible adverse effects on the flood 

safety of the confluence zones. 

The experimental set-up and the test configurations are based on the analysis of the 

Upper Rhone River, in Switzerland, which can be considered as representative of regulated 
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alpine river confluences. Systematic laboratory experiments were performed in a confluence 

flume where the main channel is 8.5 m long and 0.50 m wide. A 4.9 m long and 0.15 m wide 

tributary channel is connected at an angle of 90°. Three discharge scenarios were tested for 

four different geometrical configurations: a reference case (without widening) and three 

different tributary widenings: the “Small” configuration, (Bw = 0.30 m and Lw = 0.45 m, the 

“Medium” configuration (Bw = 0.45 m and Lw = 0.45 m) and the “Large” configuration 

(Bw= 0.45 m and Lw = 0.60 m). Each experiment was conducted under steady flow conditions 

in the main and tributary channels and with a steady supply of poorly sorted sediments 

(d50=0.82 mm and d90 = 5.7 mm) at the tributary. There is no sediment transport in the main 

channel upstream of the confluence. All experiments were conducted until the equilibrium 

conditions were reached. The duration of the tests varied between 22 and 24 hours. 

Measurements of the three-dimensional velocity field, turbulence, bed material grain 

size distribution and morphology as well as observations of the sediment transport in the 

confluence flume for the reference case revealed that the hydro-morpho-sedimentary 

processes occurring in alpine confluences differ fundamentally from existing conceptual 

models of confluence morphodynamics. Therefore, a conceptual model for the main hydraulic 

and morphological processes occurring in confluences with characteristics similar to those 

found in alpine environments is proposed. Bed morphology in alpine confluences is 

characterized by the presence of a significant deposition bar downstream of the confluence. 

Differences between the water depths in the tributary and in the main channel induce the 

formation of large bed discordance between the confluent channels. Moreover, no 

considerable scour hole is observed. Regarding the flow, the tributary momentum input, 

associated with the presence of the deposition bar resulted in a considerable mass 

redistribution in the confluence zone as the main flow is deviated towards the outer bank. The 

main channel flow is hardly hindered by the tributary in the lower part of the water column, 

giving rise to a two-layer flow structure at the tributary mouth. The two-layer flow plays an 

important role in dampening the formation of a flow recirculation zone downstream of the 

confluence. The deposition bar downstream from the confluence reduces the flow area and 

causes flow acceleration. The sediment supplied by the tributary is mainly sorted and 

transported on the face of the deposition bar. The sediment transport capacity is further 

increased by the three-dimensionality of the flow. It is characterized by maximum velocities 

occurring near the bed and by a considerable increase in turbulent kinetic energy generated in 



Abstract 

v 

the shear layer at the interface of the flows originating from the main channel and the 

tributary.  

Laboratory experiments revealed that the local widening of tributaries creates a 

pronounced heterogeneity in the sediment substrate, flow velocities and flow depths, without 

having any adverse effects on flood safety in the confluence zone. Although the local tributary 

widening allows a reduction in the confluence angle, it locally amplifies the hydro-morpho-

sedimentary processes in the confluence zone. This is due to the reduction of the effective 

flow area in the local tributary widening, resulting in locally increased tributary velocities and 

momentum flux. This reduction of the effective flow area occurs due to a general rise of the 

bed elevation and by a lateral constriction of the flow induced by a zone of flow stagnation at 

the upstream confluence corner. Flow coming from the tributary remains in the upper part of 

the water column in the main river and it is considerably more directed outwards than flow in 

the lower part of the water column coming from the main channel. The increased tributary 

velocities lead to increased bed discordance and a higher tributary penetration in the 

confluence zone. 

Despite the different morphodynamic responses at the widened zones depending on the 

geometry and the discharge ratio, the local tributary widening always enhance the variability 

of flow depths, bed constitution and flow velocities without causing adverse effects on the 

morphodynamics of the tributary and main channels in equilibrium conditions. Furthermore, 

the lateral freedom obtained by the local widening associated to the different combinations of 

the main and tributary discharge events further allows the formation of different bed forms, 

which contributes to the improvement the lateral connectivity of regulated networks.  

Therefore, local tributary widening can be considered as an efficient solution for 

increasing the ecological potential of fluvial systems without reducing the conveyance 

capacity of a given network. 

 

Keywords: Alpine river confluences, experimental investigation, morphodynamics, 

sediment transport, river rehabilitation. 





 

vii 

Résumé 

Dans les régions alpines d'Europe, les aménagements des cours d'eau ont généralement 

transformé les larges rivières en tresse en systèmes linéaires caractérisés par un manque de 

diversité structurale, à savoir de bancs de graviers, d’îles, de rapides et de zones calmes. Ces 

interventions ont considérablement appauvri les valeurs écologiques. A partir de la fin du 

20ème siècle, "la réhabilitation des cours d’eau" est devenue un concept couramment utilisé 

par les professionnels dans le domaine de l'environnement et par les autorités responsables de 

la gestion des cours d’eau. Le but de la réhabilitation est de reconstituer l’espace vital 

nécessaire au cours d’eau qui a été fortement dégradé par les interventions humaines. Ce 

concept associe une utilisation durable des cours d’eaux avec le bien-être des communautés 

riveraines. En plus, les protections contre les crues doivent être adaptées aux risques 

hydrologiques liés à l’urbanisation croissante. La compréhension de la dynamique de 

l'écoulement, du transport des sédiments et de l'évolution morphologique est essentielle pour 

accomplir avec succès les projets de réhabilitation des cours d’eaux.  

Les confluences alpines sont généralement caractérisées par des petits cours d’eaux à 

forte pente dont le lit est formé par des graviers qui se connectent asymétriquement à la 

rivière principale avec des grands angles. Pendant les crues, les petits affluents transportent 

des quantités importantes de sédiments. Ces zones présentent des défis importants, non 

seulement pour la protection contre les crues, mais aussi pour les travaux de réhabilitation. 

Les connaissances actuelles sur les confluences sont principalement basées sur les régions de 

plaine et ne sont pas applicables aux confluences alpines. 

La morphodynamique des confluences est étudiée expérimentalement avec une attention 

particulière sur le potentiel de l'élargissement local de l’affluent dans le cadre de projets de 

réhabilitation des confluences. L’élargissement vise à augmenter la variabilité des sédiments 

dans le substrat, de la profondeur d'écoulement et de la vitesse d'écoulement, ce qui est 

favorable pour le développement des habitats (par exemple, des invertébrés aquatiques, des 

poissons et de la végétation) et pour la connectivité latérale des réseaux fluviaux. Les zones 

d'eau calmes (stagnation et/ou recirculation) présentes dans les zones élargies peuvent jouer 

un rôle important en tant que refuges en cas de crues. En outre, un élargissement local de 

l’affluent peut créer une zone riveraine qui favorise la diversité des plantes et des animaux 

(oiseaux, mammifères, insectes, amphibiens). De toute évidence, la réhabilitation des cours 
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d’eau par le biais d’un élargissement de l’affluent n'est possible que si elle a des effets 

négatifs négligeables sur la protection contre les crues dans les zones des confluences.  

L’installation expérimentale et les configurations testées sont basées sur le Rhône en 

Suisse et sont représentatives des confluences aménagés trouvées en zone alpine. Les essais 

systématiques ont été effectués dans une confluence où le canal principal a une longueur de 

8.5 m et une largeur de 0.50 m. L’affluent, d’une longueur de 4.9 m et d’une largeur de 

0.15 m, se connecte au canal principal avec un angle de 90°. Trois scénarios de débit ont été 

testés dans quatre configurations différentes de la confluence : une configuration de référence 

(sans élargissement) et trois élargissements. Chaque essai a été réalisé avec des conditions 

stationnaires de débit dans l’affluent et dans le canal principal et un débit solide constant 

constitué par des sédiments avec une granulométrie étendue (d50 = 0.82 mm et d90 = 5.7 mm) 

dans l’affluent. Il n'y a pas de transport de sédiments dans le canal principal en amont de la 

confluence. Tous les essais ont été menés jusqu'à ce que les conditions d'équilibre soient 

atteintes, ce qui durait entre 22 et 24 heures. 

Les mesures du champ de vitesse en trois dimensions, de la turbulence, de la 

granulométrie des matériaux déposés et de la morphologie ainsi que les observations du 

transport de sédiments pour la configuration de référence ont révélé que les processus hydro-

morpho-sédimentaires agissant sur les confluences alpines sont fondamentalement différents 

de ceux décrits par des modèles existants sur la morphodynamique des confluences. 

Par conséquent, un modèle conceptuel expliquant les principaux processus hydrauliques 

et morphologiques dans les zones de confluences avec caractéristiques similaires à celles 

trouvées dans les environnements alpins est proposé. Le modèle est validé par les trois essais 

expérimentaux menés dans la configuration de référence avec différents rapports de débit 

ainsi que par des observations sur les confluences du Rhône. La morphologie des confluences 

alpines est caractérisée par la présence d'un banc important en aval de la confluence. Les 

différences entre les profondeurs de l’écoulement dans l’affluent et dans le canal principal 

conduisent à la formation d’une discordance entre les lits. De plus, aucune zone d’érosion 

significative n’est créée. En ce qui concerne l’hydrodynamique, la quantité de mouvement 

introduite par l’affluent, associée à la présence du banc, provoque une redistribution des 

masses considérable dans la zone de confluence, induisant une déviation de l’écoulement 

principal vers la rive externe. L’écoulement principal près du fond est peu obstrué par 

l'affluent, donnant naissance à une structure de l'écoulement à deux couches dans 

l'embouchure de l’affluent. L’écoulement à deux couches joue un rôle important en 
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empêchant la formation d'une zone de recirculation en aval de la confluence. Le banc en aval 

de la confluence réduit la surface d'écoulement et provoque son accélération. Les sédiments 

transportés par l'affluent sont triés et transportés sur le parement du banc. La capacité de 

transport des sédiments est accrue par la tridimensionnalité de l'écoulement, qui se caractérise 

par des vitesses maximales près du fond et par une augmentation considérable de l'énergie 

cinétique turbulente générée dans la zone de cisaillement à l'interface des écoulements 

confluents. 

Les essais en laboratoire indiquent que l'élargissement local des affluents conduit à une 

variabilité importante des substrats du lit, des vitesses d'écoulement et aussi des profondeurs 

d'écoulement. Cette augmentation de variabilité n’est par contre pas associée à des effets 

adverses concernant la sécurité contre les crues dans la zone de la confluence. Bien que 

l'élargissement local de l’affluent permette une réduction de l'angle de confluence, il amplifie 

localement les processus hydro-morpho-sédimentaire dans la zone de confluence. Cela est dû 

à la réduction de la surface de l’écoulement dans la zone élargie, ce qui entraine une 

augmentation de vitesse de l’écoulement. La réduction de la surface de l’écoulement est due à 

l’élévation générale du niveau du fond et par une constriction latérale de l'écoulement induite 

par une zone de stagnation d'écoulement dans le coin à l’amont de la confluence. 

L’augmentation de vitesse dans la zone élargie conduit à l’augmentation de la discordance du 

fond et à une plus grande pénétration de l’affluent dans la zone de confluence.  

Même si la morphodynamique des zones élargies répond différemment aux scénarios de 

débit et à la forme de l’élargissement, un élargissement local de l’affluent améliore toujours 

l’hétérogénéité morphodynamique de la zone de confluence, sans toutefois provoquer d'effets 

négatifs sur la protection contre les crues dans des conditions d’équilibre. En plus, le degré de 

liberté spatial donné par l’élargissement, associé aux différentes combinaisons de débits dans 

le cours d’eau principal et dans le tributaire peut conduire à la formation des différentes 

formes du lit, ce qui est favorable à l’amélioration de la connectivité latérale. Ainsi, un 

élargissement local de l’affluent peut être considéré comme une solution efficace pour 

augmenter le potentiel écologique des systèmes fluviaux sans réduire leur capacité de 

transport. 

 

Mots-clé: Confluences alpines, investigation expérimentale, morphodynamique, 

transport de sédiments, réhabilitation. 
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Resumo 

Na região dos Alpes Europeus, as obras de regularização de rios foram responsáveis pela 

transformação de leitos largos e trançados em leitos lineares com ausência de diversidade 

estrutural, como por exemplo bancos de cascalho, ilhas, corredeiras e piscinas. Essas 

alterações empobreceram consideravelmente os ecosistemas fluviais. A partir do final do 

século 20, o conceito de "revitalização fluvial" passou a ser amplamente utilisado por 

profissionais e autoridades de gestão fluvio-ambiental. O objetivo é a recuperação dos espaços 

vitais degradados pela atividade humana e a associação da utilização sustentável dos rios com 

o bem-estar humano. Além disso, a proteção contra as cheias também tem de ser adaptada 

devido ao aumento do risco hidrológico resultante da crescente urbanização. Um bom 

entendimento da dinâmica do escoamento, do transporte de sedimentos e do desenvolvimento 

morfológico do leito é essencial para o sucesso dos projetos de revitalização fluvial. 

As confluências alpinas são geralmente caracterizadas pelo encontro de pequenos rios 

com declive acentuado e que transportam grandes quantidades de materiais não uniformes 

durante suas cheias, com um rio principal com grandes ângulos em planta. Esse tipo de 

confluência representa desafios importantes, não somente no que diz respeito à proteção 

contra as cheias mas também pelo seu grande potencial de revitalização. O conhecimento 

atual relativo às confluências é, em grande parte, resultado de medidas de campo em 

confluências de planície e por isso não pode ser diretamente aplicado a esse tipo de 

configuração.  

No presente trabalho, a morfodinâmica de confluências alpinas regularizadas é estudada 

experimentalmente com uma atenção especial ao alargamento do afluente na zona da 

confluência no âmbito de projetos de revitalização. O alargamento local do afluente tem como 

objetivo o aumento da heterogenidade do seu substrato e também das velocidades e alturas do 

escoamento. Essas características são essênciais para a criação de habitats. Além disso, o 

alargamento pode ajudar na criação de uma zona ripária que favorece a diversidade de plantas 

e animais. Essas mudanças são extremamente favoráveis pra o o aumento da conectividade 

lateral dos sistemas fluviais atualmente regularizados. Obviamente, projetos de revitalização 

fluvial somente são viáveis com a ausência de efeitos negativos em termos de proteção contra 

as cheias.  
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A instalação experimental e o programa de ensaios foram projetados com base na parte 

suíça do rio Ródano. Esse rio sofreu duas importantes obras de regularização do seu leito e 

atualmente sua bacia hidrográfica encontra-se em uma situação ecológica crítica. Foram 

realizados ensaios sistemáticos em uma confluência onde o canal principal tem 8.50 m de 

comprimento e 0.50 m de largura. Um afluente de 4.90 m de comprimento e 0.15 m de largura 

é conectado com um ângulo de 90° em planta. Três cenários de vazão foram testados em 4 

configurações diferentes da confluência: a configuração de referência (sem alargamento) e 

três alargamentos simétricos com diferentes tamanhos. Cada ensaio foi realizado com 

condições permanentes de vazão no canal principal e no afluente, e uma vazão sólida 

permanente introduzida no afluente. Em nenhum dos casos houve introdução de sedimentos 

no canal principal à montante da confluência. Todos os ensaios foram conduzidos até a 

condição de equilíbrio e a duração de cada um foi entre 22 e 24 horas.  

Medidas do campo de velocidade em três dimensões, da turbulência, da morfologia e da 

constituição do fundo, além de observações do transporte de sedimentos para o caso de 

referência mostraram que os processos hidro-morfo-sedimentológicos relativos ao tipo de 

confluência estudada são fundamentalmente diferentes dos apresentados nos modelos 

morfológicos existentes, mais adaptados a confluência em planície. Os resultados permitiram 

o desenvolvimento de um modelo conceitual que considera os principais processos 

morfodinâmicos relativos à confluências semelhantes às encontradas nas regiões alpinas. Nos 

casos estudados, a morfologia é caracterizada pela presença de um importante depósito a 

jusante da confluência. A diferença entre as profundidades dos escoamentos é responsável 

pela formação de uma grande discordância dos fundos entre o canal principal e o afluente. 

Além disso, as erosões do fundo, geralmente presentes nos modelos existentes são bem 

menores ou mesmo inexistente nesses casos.  

No que diz respeito ao campo de escoamento, a quantidade de movimento introduzida 

pelo afluente, associada com a presença do depósito à jusante leva à uma redistribuição de 

massa, onde o escoamento principal é desviado para lado externo da confluência. A parte 

inferior do escoamento principal na parte interior do canal principal não é afetada pelo 

afluente e isso leva à formação de um escoamento em duas camadas. Esse fenômeno impede a 

formação de uma zona de recirculação à jusante da confluência. A presença da zona de 

depósito leva à uma redução da área do escoamento e consequentemente à uma aceleração do 

escoamento. No canal principal, os sedimentos sofrem uma triagem natural. Os sedimentos 

mais finos são transportados no topo enquanto os sedimentos mais grosseiros são 
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principalmente transportados nas encostas do depósito.. A capacidade do transporte de 

sedimentos é aumentada pela tri-dimensionalidade do escoamento, que é caracterizada por 

velocidades máximas ocorrendo perto do fundo e por um aumento considerável da energia 

turbulenta do escoamento.  

Os ensaios em laboratório revelaram que o alargamento local dos afluentes conduz à 

uma grande heterogeneidade do leito, das velocidades e das profundidades do escoamento do 

fluxo, sem quaisquer efeitos que prejudiquem às cheias na zona da confluência. Embora o 

alargamento local do afluente permita uma redução no ângulo da junção, verifica-se 

localmente uma amplificação dos processos hidro-morfo-sedimentológicos na zona da 

confluência. Isto ocorre devido à redução da área efetiva do escoamento na zona alargada, 

resultando em uma aceleração do escoamento e em um aumento da quantidade de movimento 

do afluente. Esta redução de área efetiva ocorre devido à sobrelevação do leito e da constrição 

lateral do escoamento do afluente induzido pela zona de estagnação formada no canto à 

montante da confluência. A aceleração do escoamento do afluente na zona de confluência 

leva ao aumento da discordância dos fundos e à uma maior penetração do afluente na zona da 

confluência. 

Apesar das diferentes respostas morfodinâmicas nas zonas alargadas dependendo da 

geometria do alargamento e da relação de vazões entre o afluente e o canal principal, o 

alargamento local do afluente sempre aumenta a variabilidade dos parâmetros necessários 

para a revitalização, sem causar efeitos negativos em condições de equilíbrio de transporte de 

sedimentos, como as consideradas nessa pesquisa. Além disso, a liberdade lateral obtida pelo 

alargamento associada à diferentes combinações des cheias naturais do canal principal e do 

afluente permite ainda a formação de diferentes formas de fundo, o que contribui para o 

aumento da conectividade lateral de sistemas fluviais regularizados. 

Sendo assim, o alargando local do afluente pode ser considerado como uma solução 

eficiente para aumentar o potencial ecológico dos sistemas fluviais, sem reduzir sua 

capacidade de transporte. 

 

Palavras-chave: Confluências alpinas, investigação experimental, morfodinâmica, 

transporte de sedimentos, revitalização fluvial. 
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1.1 Alpine river confluences 

During the past centuries, rivers have been trained in many countries in order to improve 

flood protection of cultivated and urban land. In alpine regions, river training typically 

transformed wide braided rivers into relatively narrow straight channels with monotonous 

linear profiles with a lack of structural diversity, i.e. gravel banks, islands, woody debris, 

riffles or pools. The results impoverished river ecosystems. Currently, only about 10% of the 

most important rivers of the entire Alpine region are still in a “near-natural” condition (Rohde 

et al., 2005).  

In fluvial networks, stream channel confluences produce significant changes in flow, 

sediment transport and morphology. Moreover, confluences are important for example for the 

ecological connectivity, flood control and water quality. Alpine confluences are typically 

characterized by steep gravel-bed streams carrying large sediment loads, which often connect 

asymmetrically at large angles with the main river at the valley bottom. Such zones present 

important challenges, not only for flood protection but also for rehabilitation works. A good 

understanding of the flow patterns, sediment transport as well as bed morphology is essential 

to successfully design river rehabilitation project for confluence zones.  

Bourgeois (2006) has performed an analysis of the ecological value of the Rhone basin 

in the Valais Canton, Switzerland, as well as the potential to improve the ecological value by 

means of an optimal connection of its tributaries. The methodology was based on the analyses 

of four different criteria: ecomorphology, flow, water quality and connectivity and it was 

applied to the 21 main confluences of the Upper Rhone River. The analysis revealed that the 

river’s ecological quality is currently poor, a situation that is mainly due to past river training 

works. However, a considerable improvement of the ecological quality can be obtained by 

means of relatively low-cost measures at the confluences. 

From the end of the 20th century, rehabilitation of rivers that were previously degraded 

by human interventions has been commonly applied by environmental professionals and 

authorities (Bernhardt et al., 2005; Reichert et al., 2007). The purpose is to recover the vital 

space required for the rivers, linking the sustainable use of rivers and wetlands with human 

well-being (Nakamura et al., 2006). The vital space is required to maintain the quantity and 

quality of the water in the natural water system in order to safeguard its role in the ecosystem 

over time (Havinga et al., 2005). Rehabilitation projects can therefore be considered as 
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complex processes in which fluvial dynamics, environment and flood protection play an 

important role (Peter, 2006). The insufficient understanding of natural conditions may be 

responsible for the fact that a high proportion of rehabilitation projects fail (Lockwood and 

Pimm, 1999).  

1.2 Research project “Integrated River Basin Management” 

River rehabilitation projects commonly include experiments in scale models. Over the last 

years, the Laboratory of Hydraulic Constructions (LCH), at the École Polytechnique Fédérale 

de Lausanne (EPFL), has participated in a large number of rehabilitation projects in 

Switzerland (Boillat et al., 2006; Meile, 2006; Schleiss, 2006; Jenzer et al., 2008). Moreover, 

LCH is a partner in the interdisciplinary research project “Integrated River Basin Project” 

(Integrales Flussgebiestmanagement) which has the objective of understanding the ecological 

and socio-economical consequences of river training works and providing advice for future 

interventions on river systems. The main focus is on “biodiversity and flood protection 

measures” as well as “lateral and longitudinal connectivity of rivers”. The research project is 

funded by the Federal Office for the Environment (FOEN) and the project partners are 

EAWAG, WSL and VAW-ETH Zurich. In the LCH, the following topics are investigated: 

A) Flood protection measures and habitat quality (“Konstructiver Hochwasserschutz 

und Lebensraumvielfalt”) 

B) Improvement of habitat conditions in case of hydropeaking (“Verbesserung der 

Habitatsbedingungen bei Schwall und Sunk”) 

C) Morphology of restored river confluences (“Morphologie von naturnah gestalteten 

Einmündungen von Seitengewässern”) 

D) Stability and connectivity of block ramps (“Stabilität und Durchgängigkeit von 

Blockrampen”) 

A diagram illustrating the other projects with their respective leaders and the connection 

between all the projects is shown in Figure 1-1. 
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Figure 1-1: Diagram of the Integrated River Basin Management research project. 

1.3 Purpose of the research project 

The present Ph.D. project corresponds to topic C of the Integrated River Basin Management 

project. The aim is to gain insight in the flow structure and morphological development in 

alpine confluences in the framework of river rehabilitation projects. Special attention is given 

to the local widening of the tributary channel and its influence on the hydro-morpho-

sedimentary processes in the confluence zone. Results are obtained by means of systematic 

experimental investigation carried out in a confluence flume at EPFL. The experimental set-

up and conditions are based on the Upper Rhone River confluences, in Switzerland. 
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The main objectives of the present research project are: 

• To observe, measure and quantify the hydro-morpho-sedimentary processes in 

controlled laboratory settings that are representative of alpine confluences; 

• To gain insight in the interactions and feedback mechanisms between these hydro-

morpho-sedimentary processes; 

• To investigate the influence of the discharge and momentum flux ratios on the 

morphology of channelized alpine confluences; 

• To investigate the influence of the local widening of the tributary channel on the 

flow dynamics, sediment transport and bed morphology; 

• To qualitatively examine the ecological potential of a local tributary widening; 

• To provide detailed data on the three-dimensional flow field, the morphology and 

the sediment characteristics that is essential for the validation of numerical 

models. 

1.4 Structure of the report 

This report is divided into eight chapters. Each chapter is self-contained, which unavoidably 

leads to some redundancy, especially in the chapters concerning the data analyses (Chapters 5, 

6 and 7) that are written as scientific papers. 

 

Chapter 2 presents a review of the 

existing literature on confluences, which leads 

to the conclusion that there is a lack of 

information regarding studies on sediment 

transport and the morphology in natural and 

laboratory confluences. Furthermore, alpine 

confluences have not yet been studied and no 

investigation has been done on the potential of 

local tributary widening for rehabilitation 

projects. 
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Chapter 3 presents the design of the 

experiments based on an analysis of river 

confluences located in the Upper Rhone basin. 

The choice of this basin for designing the 

experimental set-up is justified by its 

representativeness of regulated alpine river 

systems. The experimental procedures and 

techniques are presented. 

 

Chapter 4 reports the main hydro-morpho 

features that are common for all experiments. 

Moreover, it presents the appendixes where all 

the data are documented systematically.  

 

 

Chapter 5 discusses the test results 

performed in a reference configuration (without 

tributary widening) for one discharge scenario. 

The analyses of the hydro-morpho-sedimentary 

processes in the confluence zone revealed that 

the existing knowledge on channel confluences 

is not applicable for the investigated conditions. 

Therefore, a conceptual framework for hydro-

morpho-sedimentary processes in confluences 

with characteristics similar to those found in 

alpine environments is proposed. 
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Chapter 6 discusses the influence of the 

local tributary widening on the hydro-morpho-

sedimentary processes for one discharge 

scenario. The hydraulic and sedimentary 

conditions of the test presented in this chapter 

are the same as those discussed in chapter V. 

The analyses reveal that a local tributary 

widening in the confluence zone creates a zone 

of important variability of flow depths, bed 

constitution and flow velocities without adverse 

impacts on the conveyance capacity. Therefore, 

local tributary widening is a potential measure 

for river rehabilitation projects. 

 

Chapter 7 discusses the ensemble of the 

experimental database including three discharge 

scenarios and four tributary configurations 

(reference configuration and three tributary 

widening). The results confirm the findings 

presented in Chapters 5 and 6 regarding the 

hydro-morpho-sedimentary processes in alpine 

confluences and the influence of a local 

tributary widening. Moreover they confirm that 

local tributary widening has no adverse effects 

on the conveyance capacity and the flood safety 

of the confluence zone. The ecological potential 

of a local tributary widening is highlighted. 

Finally, Chapter 8 gives the general conclusions of the research project and highlights the 

main original contributions. Furthermore, it gives some suggestions and guidelines for future 

research. 
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2.1 General 

Confluence is the hydraulic singularity where two or more channels (or rivers) converge in a 

single channel downstream. Mosley (1976) defines two types of river channel confluence 

planform: (i) asymmetric confluences, where the main channel downstream of the confluence 

is an extension of the main channel upstream (Figure 2-1a) and (ii) symmetric confluences, 

where the two confluents join and form a new channel, i.e. Y-shaped, (Figure 2-1b).  

Over the last 30 years, the synergy between laboratory tests, field measurements and 

computational dynamic models has provided valuable information about the complex hydro-

morpho-sedimentary processes acting in river confluence zones. Recently, Biron and Lane 

(2008) and Best and Rhoads (2008) present a complete bibliographic review which discusses 

the most significant works regarding river confluences. 

 

Figure 2-1: Examples of different confluence planforms. a) asymmetric confluence of the Borgne 

(tributary) and the Rhone (main channel) rivers, in Switzerland and b) symmetric confluence of the 

Milk and Missouri Rivers, in USA (By courtesy of Jim Wark, www.airphotona.com). 

2.2 Flow behaviour at river confluences 

Taylor (1944) is probably the first researcher to perform theoretical and experimental analyses 

in channel confluences in fluvial regimes, considering junction angles of 45° and 135° in an 

asymmetrical planform. He proposes a one-dimensional approach based on the momentum 

and mass conservation equations to calculate the ratio between the upstream and the 

downstream water depths, neglecting boundary friction effects and assuming the upstream 

depth equal to both upstream channels. Following the same assumption, Webber and Greated 

(1966) carried out experiments with 30°, 60° and 90° confluence angles, suggesting an 

empirical correction for Taylor’s model.  
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Subsequent to the works of Taylor and Webber and Greated, several authors proposed 

one-dimensional approaches to estimate the water depths upstream of the confluences for 

different angles, discharge ratios, channel widths, slope and flow regimes (Milano and 

Sassoli, 1977; Ramamurthy et al., 1988; Hager, 1989; Gurram et al., 1997; Hsu et al., 1998; 

Shabayek et al., 2002; Coelho, 2003). The applicability of these one-dimensional approaches 

may, however, be limited by the strong three-dimensional hydrodynamic behaviour of 

confluences.  

The first detailed description of the flow dynamics is presented by Best (1987). By 

means of an experimental investigation in a small asymmetric confluence flume, he proposes 

a descriptive hydrodynamic model (Figure 2-2). His model describes six different regions in 

confluence zones: flow deflection, flow stagnation, flow separation, maximum velocity, shear 

layer and flow recovery.  

 

Figure 2-2: Descriptive model of flow dynamics at channel confluence proposed by Best (1987). 

The flow stagnation zone is created by the deflection of both streams at the junction and is 

associated firstly, with an increase of pressure and flow depth and secondly, with a decrease 

of flow velocities and shear stresses. The change of the tributary direction creates a separation 

zone due to the flow detachment from the inner wall in the post confluence and its 

reattachment further downstream (Best and Reid, 1984; Fujita and Komura, 1989; Hager, 

1989; Qing-Yuan et al., 2009; Shakibainia et al., 2010). The geometry of the separation zone 

is of special interest because it delimits the width of the post-confluence channel, reducing the 

effective flow sectional area. Additionally, it is a region of low pressure and recirculating 

flows, commonly associated with the accumulation of fine sediments (Modi et al., 1981; Best 

and Reid, 1984). The dimensions of the flow separation zone increase with the increase of the 

confluence angle and of the discharge ratio between the tributary and the main channel (Best 
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and Reid, 1984; Weber et al., 2001b). The maximum velocity zone occurs after the junction of 

the flows at the contracted cross section besides the separation zone. It is generally associated 

with the increase of bed shear stresses and consequently with the presence of a scour.  

Shear layers are formed along the contact of the stagnated areas of the fluid and the flow 

outside. They are characterized by high turbulence intensities and shear stresses and also by 

the presence of well-organized flow structures (Nezu and Nakagawa, 1993; Nezu et al., 1993; 

Rhoads and Sukhodolov, 2001; Sukhodolov and Rhoads, 2001; Rhoads and Sukhodolov, 

2004). This turbulence intensity enhances the mixing processes downstream of the 

confluences (Biron et al., 1996a; Biron et al., 1996b; Bryan and Kuhn, 2002).  

The presence of two helical cells driven by the confluence converging at the surface 

downstream of the junction (Figure 2-3) was first described by Mosley (1976) and has been 

the subject of a large scientific debate. Their existence is confirmed by the experimental 

results of Fujita and Komura (1989) and the field measurements performed in a small bed 

concordant confluence discussed by Rhoads and Kenworthy (1998).  

 

Figure 2-3: Two helical cells as described by (Mosley, 1976) and measured by (Rhoads and 

Kenworthy, 1998). 

Bradbrook et al. (1998) demonstrate numerically that secondary circulation can be developed 

at a channel junction in the absence of planform curvature (parallel channels), under a wide 

range of combinations of depth and velocity ratios. Then, a large number of numerical 

simulations confirms that bed concordance and planform curvature are extremely important in 
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the formation of the secondary flows in confluence zones (Lane et al., 1999b; Bradbrook et 

al., 2000a; Bradbrook et al., 2000b; Bradbrook et al., 2001; Biron et al., 2002).  

Weber et al. (2001a) provides important experimental data and a description of the flow 

in a confluence by means of 3D velocities and turbulence measurements in a horizontal fixed 

bed laboratory flume with a junction of 90° and channel widths of 0.91 cm. The study 

comprises the surface velocity, the cross sectional velocity and the turbulent kinetic energy 

analysis. They propose a three-dimensional model of the flow behaviour, illustrated in Figure 

2-4. The model highlights the three-dimensionality of the flow separation zone (larger at the 

surface) and the shear plane (not vertical). It also reports the presence of one large helical cell, 

instead of two.  

 

Figure 2-4 : Three-dimensional of flow structure at a confluence (Weber et al., 2001a). 

The presence of helical cells is however, not reported in all studies. A recent investigation in a 

large confluence in the Paraná River, Argentina (Parsons et al., 2007) reveals that in reaches 

with large width-to-depth ratios, the magnitude of the water super-elevation due to the 

junction is much lower than the channel width. Therefore, the magnitude of the driving 

component of the curvature-driven circulation is quite small, which explains the absence of 

the secondary circulation.  

A good agreement between two-dimensional numerical simulations and laboratory tests 

and/or field measurements is described by several authors either for research objectives (Lane, 

1995; Lane and Richards, 1998; Ghostine et al., 2007) or for case studies (Khan et al., 2000; 

Duan and Schwar, 2003; Masujin et al., 2005; D'Oria and Tanda, 2007; Guo, 2007). Lane et 

al. (1999b) perform an extensive comparison between two and three-dimensional models 
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validated by experimental data with bed discordance (Biron et al., 1996a), parallel channels 

with bed discordance (Bradbrook et al., 1998) and field measurements (Lane and Richards, 

1998). They suggest that there is a significant advantage in moving towards three-dimensional 

modelling for confluence studies. Therefore, the use of three-dimensional numerical models 

considering fixed bed to describe flow patterns in confluences has become more frequent over 

the last years. 

Baranya and Józsa (2007b; 2007a) carried out a case study in a symmetrical confluence 

of two rivers in the Northwest of Hungary with the SSIIM program (Olsen, 2006) without bed 

changes. They found good agreement between the numerical model and experimental data in 

a distorted scale model upstream of the confluence but less concordance in the downstream of 

it. The authors advise that the steady turbulence closure is not able to fully reproduce the 

three-dimensionality of the river turbulence. This suggestion confirms the assumption of Lane 

et al. (2000) and Parsons (2003) who suggest that the application of an unsteady turbulence 

model is the only way to fully capture the intermittent or periodic flow structures, which are 

present in flows with shear layers.  

2.3 Morphodynamics of river confluences 

The confluence of two channels, each of them having independent flow and sediment 

discharge regimes creates complex erosional and depositional conditions. Changing these 

input conditions (eg. river training works, dam construction, urbanization) can promote 

important changes in channel morphology at the confluence (Wampfler, 2008). The acquired 

knowledge of confluence streams over the last years has been extremely important to 

understand the complexity of the flow. Despite these advances, there are comparatively still 

few studies of bed morphology at channel confluences. Furthermore, the nature of sediment 

transport within the junction is not yet completely understood.  

A large number of natural confluences have been studied over the last years. Among the 

natural sites, the confluences of the Kaskaskia and Cooper Slough Rivers in the USA 

(Kenworthy and Rhoads, 1995; Rhoads and Kenworthy, 1995; Rhoads, 1996; Rhoads and 

Kenworthy, 1998; Rhoads and Sukhodolov, 2001; Sukhodolov and Rhoads, 2001; Rhoads 

and Sukhodolov, 2004; , 2008; Rhoads et al., 2009) and of the Bayonne-Berthier rivers in 

Canada (Biron et al., 1993; Biron et al., 1996a; Leclair and Roy, 1997; De Serres et al., 1999; 

Biron et al., 2002; Boyer et al., 2006) have been analysed extensively. These two confluences 
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are the main source of the existing knowledge concerning the morphodynamics of river 

confluences.  

The discharge ratio between the tributaries (Qr), the confluence planform and the 

confluence angles were first defined as the most important parameters controlling the 

morphodynamics behaviour of river confluences (Mosley, 1976; Best and Reid, 1984; Best, 

1987; Best, 1988). However, the momentum flux ratio (Mr) between the tributary and the 

main channels has also been identified as an important parameter because of its influence on 

the bed morphology of small confluences (Biron et al., 1993; Rhoads and Kenworthy, 1995; 

Rhoads and Kenworthy, 1998; Biron et al., 2002; Boyer et al., 2006). The momentum flux 

ratio (Mr) is defined as: 
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where ρ is the water density [kgm-3], Q the discharge [m3s-1], U the mean velocity 

[ms-1] and the subscripts t and m represent the tributary and the main channels respectively. 

In Figure 2-5, the momentum flux ratios (Mr) are presented as a function of the 

discharge ratios (Qr) for the most important studies concerning the morphodynamics of river 

confluences. With the exception of Best’s work, all other studies have been performed in the 

field.  
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Figure 2-5: Momentum flux ratio (Mr) as a function of the discharge ratio (Qr) for the most relevant 

investigations concerning the morphodynamics of river confluences. With the exception of Best’s work 

(performed in laboratory), all other studies have been carried out on natural confluences.  
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Only a few experimental studies can be found in the literature which have been carried out 

under active bed conditions, i.e. with consideration of sediment transport. After Roy and 

Bergeron (1990), the lack of laboratory studies on flow and sediment transport at confluences 

can be explained by the difficulty of implementing adequate experimental procedures. 

Mosley (1976) performed a laboratory study in a wide flume (1.3 m) with mobile bed 

for symmetrical and asymmetrical planforms and sediment discharge input. In his study, small 

confluent channels were cut in erodible material. The morphology of the confluence zone 

including the scour depth, confluence angle and the post-confluence width were free to adjust 

to the imposed flow conditions. Ashmore and Parker (1983) extended their analyses to self 

formed confluences representative of braided rivers based on experimental tests in two wide 

channels (1.3 m and 2.3 m).  

Best (1988) was the first researcher to present a conceptual model of the bed 

morphology, which is based on systematic experimental tests performed under live bed 

conditions in asymmetrical confluences with equal channel widths (0.15 m) and concordant 

beds. Several discharge ratios (around 0.5 to around 1.5) and different confluence angles 

between the tributaries (15° to 105°) were considered. Well-sorted sand was used for the bed 

constitution and sediment supply. Among the other results, the estimation of the maximum 

bed scour (Figure 2-6a) and scour orientation (Figure 2-6b) as a function of the discharge ratio 

(Qr) and the confluence angle (α) can be mentioned.  
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Figure 2-6 : a) Scour depth (ds) as a function of confluence angle (α) and discharge ratio Qr and  

b) orientation of maximum scour as a function of α and Qr (Best, 1988). 

Best's (1988) conceptual model was further refined by Best and Rhoads (2008) who describes 

the bed morphology of river confluences by five main features influencing directly the flow 

dynamics discussed in the section 2.2 (Figure 2-2):  

1) Scour hole due to the increase of flow velocity and turbulence within the confluence 

zone. The scour hole is also linked to the helical cells;  

2) Tributary mouth bars with the associated avalanche faces formed at the mouth of one 

or both tributaries and often sloping into the scour hole;  

3) Mid-channel bar;  

4) Bank-attached lateral bars, associated with regions of flow deceleration and/or flow 

separation and  
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5) A region of sediment accumulation near the upstream corner, probably associated with 

the flow stagnation zone. In Figure 2-7, the first, second and fourth features are 

illustrated.  

 

Figure 2-7: Morphologic descriptive model proposed by (Best, 1988). 

The consideration of confluences with discordant beds is relatively recent even if this 

characteristic morphology is common in nature (Kennedy, 1984). Contrary to bed concordant 

confluences discussed above, the tributary and main channels mouth elevations are not the 

same in confluences with bed discordance. Field measurements (Biron et al., 1993; Biron et 

al., 1996a) demonstrate that the presence of a bed discordance between the confluent channels 

modifies considerably the flow in the confluence zone, affecting the sediment transport and 

the bed morphology. In addition, it can increase the turbulence intensity in the shear layer and 

consequently increase flow mixing downstream of the confluence (Gaudet and Roy, 1995; 

Biron et al., 2004). By means of field measurements, Leclair and Roy (1997) propose 

different models of the hydro-morpho-sedimentary dynamics at a confluence with discordant 

beds during low flow and high momentum flux ratio, Mr≥1. They relate the variations of the 

tributary mouth bar to changes in Mr. Furthermore, they distinguish between a phase of bar 

erosion for Mr~1 and a phase of bar construction and full bar extension for Mr>>1. The most 

complete study concerning bed discordant confluences is presented by (Boyer et al., 2006). 

They describe in detail the flow structure and its interaction with sediment transport and bed 

morphology at the Bayonne-Berthier confluence. Two conceptual models of sediment 

transport and morphological changes are proposed, one for Mr>1 and the other for Mr<1 

(Figure 2-8). 
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Figure 2-8: Conceptual models for flow and sediment dynamics at discordant bed confluences during 

a) high (Mr<1) and b) low flows (Mr>1) proposed by (Boyer et al., 2006). 

Recently, experimental studies performed under clear water conditions focused on confluence 

scour. Ghobadian and Bajestan (2007) presents dimensionless relationships for predicting 

scour hole and point bar dimensions as a function of the discharge ratio between the post-

confluence and tributary channels (Qp-c/Qt), the confluence angle (α), the Densimetric Froude 

Number (Fg) downstream of the confluence and the post-confluence water depth. The 

Densimetric Froude Number is defined as: 

50s
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d*)1G(*g

U
Fg

−
= −

 Eq. 2.2 

where Up-c denotes the flow velocity downstream of the river confluence, g is the 

gravitational acceleration, Gs the specific gravity of sediment and d50 the median particle size.  
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The results are derived from experimental investigations performed in an asymmetrical 

confluence where the main channel is 0.35 m and the tributary 0.25 m wide. Three different 

confluence angles (60°, 75° and 90°) and several discharge ratios were considered. The same 

approach has been presented by Borghei and Sahebari (2010). A one-dimensional equation is 

given for the estimation of the scour hole depth based on the confluence angle, downstream 

water depth and the ratios of channel widths, discharges and flow velocities.  

Bajestan and Hemmati (2008) investigated the influence of the bed discordance on the 

scour depth in a confluence flume where the main channel is 0.35 m wide. Two tributary 

widths, 0.25 and 0.35 m were considered for a confluence angle of 60°. It was shown that for 

a same hydraulic condition, the presence of the bed discordance can reduce the magnitude of 

the scour hole. These results are confirmed by the absence of an important scour hole in the 

bed discordant confluence of the Bayonne and Berthier Rivers (Leclair and Roy, 1997; Boyer 

et al., 2006). 

2.4 Concluding remarks 

From the review of the existing literature on confluence studies, the following conclusions 

can be drawn: 

• Hydraulic and sedimentary processes in confluences involve several variables 

such as the number of adjoining channels, intersection angles, planform of the 

confluence, channel sizes and slopes, water and solid discharges. 

• The hydro-sedimentary-processes of confluences are extremely complex. 

However, hydrodynamics in confluence zones are quite well understood. The 

influence of the most important parameters controlling the hydrodynamic features 

as the planform of the confluence, the confluence angle, the bed concordance, the 

ratios between the channels width, flow discharge and flow velocity are well 

recognized. The remaining open discussion mainly concerns: 

- the presence, the number and the intensity of the secondary circulation driven 

by the confluence;  

- the processes of flow mixing downstream of the confluences;  

- the characteristics of the shear layers;  

- the behaviour of the flow separation zones. 
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• The database of flow measurements performed in both natural confluences and 

laboratory flumes is considerable. These data have been used for the validation of 

three-dimensional models. They are crucial for gaining better insight into the 

hydrodynamics of the confluence zone as a function of the different controlling 

parameters. 

• No systematic laboratory experiments have been performed under active bed 

conditions except Mosley (1976), who has performed experiments in bank 

erodible channels and Best (1988), who has investigated asymmetric confluences 

in a small laboratory flume. Thus, there is a considerable lack of morphodynamic 

studies under systematic controlled laboratory conditions. 

• Most of the current knowledge regarding morphodynamics in river confluences is 

based on the analyses of two small scale confluences: (i) the asymmetric bed 

concordant confluence between the Kaskaskia and the Copper Slough Rivers in 

USA and (ii) the asymmetric bed discordant confluence between the Bayonne and 

Berthier Rivers in Canada. Both confluences are characterized by a low sediment 

transport activity.  

• In spite of the advances in the understanding of the dynamics of confluences, no 

attention has been devoted to steep river channel confluences with coarse bed 

material as can be found in alpine environments.  

• Finally, no tributary widening and its influence on the morphology of confluence 

zones has been investigated. 
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3. Design of the experiments 
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3.1 Characteristics of Alpine confluences. The Upper Rhone Basin  

In order to design the experimental set-up and the conditions for the research project, a 

detailed analysis of the Upper Rhone River catchment (Switzerland) and its twenty main 

confluences between Brig and Lake Geneva was performed. The analysis is based on the last 

reach of the tributaries in the floodplain before their junction with the Rhone. The river basin 

was chosen because it is representative for regulated alpine river systems, which is the focus 

of the present research project.  

The Upper Rhone basin is located in the south-western part of Switzerland (Figure 3-1) 

and covers an area of 5220 km2. The catchment area is comprised of 38% of rocks and 

glaciers, and 62% of pastures, forest and agricultural lands according to Loizeau and Dominik 

(2000). The main river, the Rhone has a length of approximately 166 km from its source at the 

Gletsch Glacier (~1800 m asl) to Lake Geneva (~372 m asl).  

 

Figure 3-1: Upper Rhone River basin showing the main confluences downstream of Brig. The red 

circle in the Rhone basin indicates the location of the confluence between the Rhone and Avançon 

River shown in Figure 3-5.  
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3.1.1 Historical evolution  

Originally, the Rhone River was a natural alpine braided river with a powerful dynamics 

(Figure 3-2). The bed of the main channel could laterally extend over hundreds of meters and 

was in strong interaction with wetlands. From the middle of the 19th century, the Rhone river 

training works started and they were mainly motivated by flood protection of cultivated and 

urban land. Human activities (agriculture, industry and urbanization) extended more and more 

into the flood plains. These river training works changed considerably the hydro-morpho-

sedimentological structure of the Rhone (Brauchli, 2009).  

 

Figure 3-2: Image extracted from the Napoleonic maps drawn in 1802 showing the braided Rhone 

(SRCE, 2008). 

The so-called 1st Rhone River Correction started in 1863 and took about 30 years. The main 

objective was to fix the main channel, ensuring the flood safety of the floodplain required for 

agricultural development. However, the sediment transport capacity of the new Rhone was 

not sufficient to transport the huge quantity of gravel carried by its tributaries. Consequently, 

the bed rose by sediment deposition endangering again the flood safety.  

For that reason, the 2nd Rhone River Correction began in 1930 and was completed in 

1960. The main goal was to increase the sediment transport capacity. Thus, the main channel 

was further narrowed by filling the space between the perpendicular groynes of the 1st Rhone 

River Correction with continuous rip-raps. Furthermore, the flood dykes (levees) were 

heightened. Figure 3-3 illustrates the 1st and 2nd Rhone River Corrections. 
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Figure 3-3: Plan view of a typical reach of the 1st and 2nd Rhone River Corrections (SRCE, 2008). 

Presently, less than 1% of the Rhone can be considered as truly natural. The main channel is 

fixed and its width varies between 30 and 60 m.. The morphological characteristic of the river 

can be summarized by a monotonous linear prismatic profile and a lack of structural diversity 

(i.e. gravel banks, islands, woody debris, riffles or pools), as illustrated in Figure 3-4. 

Furthermore, today, the Rhone River has an important deficit of discharge capacity, revealed 

during the three recent major floods (1987, 1993 and 2000). These safety problems combined 

with the low ecological value motivated the ongoing 3rd Rhone correction, mainly based on 

river widening. 

 

Figure 3-4: Typical reach of the Upper Rhone River in 2008. 

3.1.2 Upper Rhone River confluences 

As already mentioned in Chapter 2, the hydrodynamic processes in confluences involve 

several parameters, such as the number of adjoining channels, intersection angles, shape and 
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slope of the channels, discharge ratios, sediment transport, the rounding of the corners. 

(Gurram et al., 1997; Weber et al., 2001b; Huang et al., 2002; Shakibaeinia et al., 2007). For 

this reason, the different confluences are difficult to categorize.  

In spite of the many different parameters that characterize river confluences, the 

analysis of the main confluences of the Upper Rhone has revealed some important 

similarities. All tributaries are channelized, a result of the past river training works. The bed 

elevations of the tributaries and the main channel are discordant as illustrated by the 

confluence of the Rhone with the Avançon River (Figure 3-5).  

 

Figure 3-5: Picture of the confluences of the Rhone with the Avançon Rivers showing the bed 

discordance (see Figure 3-1 for the location). 

Bourgeois (2006) performed an extensive analysis of the increase of the “ecological potential” 

of the Upper Rhone River by an optimal connection of its tributaries. The methodology is 

based on the analyses of four different domains, i.e., ecomorphology, flow regime, water 

quality and connectivity and was applied to the main Rhone confluences (Figure 3-6). It was 

concluded that the Rhone catchment is currently in an ecologically poor state mainly because 

of the channelization of the Rhone’s tributaries as well as the presence of fixed weirs in some 

confluence zones. However, the ecological value of the major part of the confluences can be 

increased with a relatively small investment. 
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Figure 3-6: Graphical representation of the current state and the ecological potential of the Upper 

Rhone River confluences in Switzerland (Bourgeois, 2006). 

A more detailed analysis of the main parameters discussed in Chapter 2 was performed 

concerning the hydraulic and morphological behavior of river confluences in the Rhone basin. 

In fluvial systems, there are progressive changes in a river from its source to downstream. 

Discharge increases with the increase of the drainage areas. As a response, channel size 

increases whereas bed slope and bed-material grain sizes decreases (Lodina and Chalov, 

1971; Knighton, 1980; Richards, 1980; Roy et al., 1988). 

From the analysis of the drainage areas it can be seen that the size of the tributary basins 

compared to that of the Rhone at the confluence node decreases considerably downstream, as 

illustrated in Figure 3-7. As described by Benda et al. (2004), this behaviour is characteristic 

of rectangular shaped basins.  
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Figure 3-7: Comparison between the drainage area of the Rhone and the ratio between the drainage 

areas of the tributaries and Rhone for the different confluences.  

Concerning the grain size distribution of the Rhone basin, an important grain sampling 

campaign has been carried out in the Upper Rhone basin, downstream of Brig (about 120 km 

upstream of Lake Geneva, Figure 3-8) in the framework of the 3rd Rhone Correction 

(Rovina+Partner-AG, 2008). Twelve locations (Figure 3-8a) have been sampled and, for each 

location, different bed layers have been analysed (Figure 3-8b). The analysis of the grain size 

distributions of the bed surface confirms that the Upper Rhone is characterized by poorly 

sorted sediments with gradation coefficients  ( )/dd  /d(d*0.5 16505084 +=σ  varying from 3 to 

9. One of the most remarkable features of natural rivers is the fining of the bed-composed 

sediments in the downstream direction (Seal et al., 1997; Toro-Escobar et al., 2000). The 

analysis of the different particle size distributions in five of the twelve locations (e.g. Naters, 

Chablais, Bramois, Branson and Vouvry), depicted in Figure 3-8c, reveals that such a 

downstream fining process can be observed in the Upper Rhone Basin. The median diameter 

(d50) passes from 128 mm in Naters to 15 mm in Vouvry, near the Lake Geneva. Abrasion 

and grain sorting are the two determinant processes responsible for the changes in the 

sediment size along the river (Knighton, 1980). 
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      a) 

 

 
 

Figure 3-8: a)Position of the 12 bed surface sample locations performed in the framework of the 3rd 

Rhone Correction, b) Scheme of the sampling procedure and c) Grain size distribution of the bed 

surface in Naters, Chablais, Bramois, Branson and Vouvry. 

Due to the addition of the water and sediment discharges by the tributary, the channel 

downstream of a river confluence naturally tends to widen. Lane (1955) proposes that channel 

width scales with the square root of the discharge (B∼ Q0.5). This proposition is consistent 

with the results of a detailed study of discontinuities in width performed by Richards (1980), 

where the increase of the width is proportional to the discharge to the power 0.6. The water 

discharges and the main channel widths do not increase gradually. The increase occurs by 

steps downstream of confluences (Ferguson and Hoey, 2008). As described above, most 

reaches of the Upper Rhone have been channelized and consequently the channel width has 

been reduced. The current Rhone’s channel shapes are not regime channels, i.e. “the channels 
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that the river would like to have” (Yalin and da Silva, 2001). Therefore, the analysis based on 

Lane's (1955) formulae is not appropriate for the present case.  

Figure 3-9 illustrates the ratio between upstream and downstream channel width  

(Bm/Bp-c) and the ratio between the tributaries and Rhone width upstream of the confluence 

(Bt/Bm). Due to channelization, the Rhone River width remains more or less the same 

downstream of the confluences. Thus, the ratio between the widths is around 1. This is not 

surprising since most of the tributaries are small (Figure 3-7) and the additional discharge is 

not important. Thus, the required increase in width in the main channel remains mostly 

insignificant. The most important increase of width occurs downstream of the Vispa River, 

which is its major tributary and where the catchment area is almost doubles at this confluence. 

Considering the relation with the tributaries, Figure 3-9 clearly shows that except for the 

Vispa River (Bt/Bm = 0.54), the variation of the ratio Bt/Bm is below 0.32.  

 

Figure 3-9: Ratio between the main and post-confluence channel widths of the main confluences of the 

Upper Rhone River and values adopted for the experimental investigation. 

The rectangular shape of the Rhone basin is typical for mountainous areas with a main 

alluvial valley and several steep torrents that reach the valley bottom almost perpendicularly 

(Figure 3-1). However, in the vicinity of the confluence zones, the connection angle between 

the channels is sometimes reduced. The final confluence angle is formed naturally due to the 

adjustment of fluvial and geomorphologic conditions. In the Rhone basin, however, it has 

been frozen by the river training works. Figure 3-10 illustrates the angles measured nearby the 

confluences by means of aerial photography (www.maps.google.com).  
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Figure 3-10: Angle of the main confluences in the Upper Rhone basin compared with the chosen angle 

of 90° in the confluence flume. 

As illustrated in Figure 3-11, the Upper Rhone basin is generally characterized by steep small 

tributaries (source: “Valais river’s database”, “BD-Eaux”). However, some tributaries cross 

the flood plain of the Rhone and are characterized by low slopes, as is the case of the 

Turtmanna, Dala, Morge and Grand-Eau River.  

 

Figure 3-11: Tributary channel slopes of the downstream reach before the confluence with the Rhone 

and range of self-forming slopes during the experimental investigation. 

The hydrologic regime of the Rhone River is strongly influenced by glaciers and can be 

divided into two flow regimes. Low flows occur during the winter, where precipitation falls as 
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snow and accumulates in the mountains. High flows start in May and is generally influenced 

by snow and ice melt. It continues until the beginning of the high altitude freeze up in October 

(Brauchli, 2009). The flow regime in the lower part of the Rhone River is also strongly 

influenced by hydropeaking (Meile et al., 2010). During the winter, the electricity demand 

and the peak energy production are high whereas during the summer, the electricity demand is 

lower and consequently the power generation is reduced. Therefore, discharges are generally 

higher during the winter and lower during the summer compared to the natural regimes.  

River geomorphologists are particularly interested in the concept of channel-forming 

discharge which is considered to be the morphogenic agent. The correct identification of 

channel-forming discharges is difficult and quite subjective (Knighton, 1998). Generally, 

flood events between 2 and 5 years return period (Q2 and Q5 respectively) can be assumed as 

determinant for the size and shape of a river channel, being also responsible for the main 

morphological and ecological development of fluvial systems over very long time-scales. In 

natural systems, the channel-forming stage is around the connection level between the channel 

and adjacent floodplain at a river reach (Wu et al., 2008; Xia et al., 2010). 

For the present research, based on the above considerations, flood discharges with a 

return period of 2 to 5 years (Q2 and Q5 respectively) were considered. Several gauging 

stations operated by the Swiss Federal Office for the Environment (FOEN) record 

continuously the discharges of the Rhone. As the same information is missing for most of the 

tributaries, their discharges have been calculated by the difference between the downstream 

and upstream discharges of the Rhone during the given flood events. Figure 3-12 presents the 

ratio between the flow discharges of the tributaries and Rhone River, showing values between 

0.2 and 0.3 for the confluences in the upper part of the basin. Values around 0.10 and 0.15 

occur for the confluences at the middle reach of the basin and very low values (less than 0.05) 

for the confluences near the Lake Geneva. Discharge values of the Dala, Printse, Morge, 

Lizerne and Salanfe are missing.  
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Figure 3-12: Ratio between the discharge of the tributaries and the Rhone during flood events with a 

return period of 2 and 5 years in the Rhone and discharges ratios chosen for the experimental tests. 

In order to analyse the flow regime of the different tributaries, the Froude Number 

(
g2

U
Fr = ) of the different reaches have been calculated for the 2 years flood as shown in 

Figure 3-12. A uniform flow was assumed and no backwater effects due to the confluence 

were considered. In order to calculate the normal depth (h) of the flow, the Manning-Strickler 

equation has been used: 

sh E*R*
n

U 3

21=  Eq. 3.1 

Here, U is the average flow velocity [ms-1], n is the Manning coefficient [sm-1/3] and Rh 

is the hydraulic radius. For uniform flows, the energy gradient Es [-] is equal to the bed slope. 

A constant Manning coefficient equal to 0.03 (d90 of the tributary bed surfaces is around 

0.10 m) was adopted and the cross-section has been considered rectangular. Figure 3-13 

reveals that generally the flow at the tributaries is transcritical (Fr~1), with some rivers 

flowing in supercritical conditions (Fr>1, Saltina, Gamsa, Navisance and Gryonne) and others 

in subcritical conditions (Fr<1, Vispa, Lonza, Borge, Trient and Vièze). Turtmanna and 

Grande-Eau have extremely low Froude Numbers because of their low bed slopes (~0).  
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Figure 3-13: Froude Numbers of the main tributaries of the Rhone and line corresponding to Fr=1, 

which denotes transcritical regimes. 

For the Upper Rhone River, the momentum flux ratios (Mr) between the tributaries and the 

main channels were estimated. Water depths and mean flow velocities in the Rhone River 

were calculated with the one-dimensional hydraulic model HEC-RAS while simple 

calculations using the Manning-Strickler equation were applied for the tributaries. Figure 3-14 

shows that the Upper Rhone basin is characterized by low momentum flux ratios (maximum 

0.45) compared to those presented in most of the field investigations in bed concordant 

confluences (Rhoads and Kenworthy, 1995; Rhoads and Kenworthy, 1998; Rhoads and 

Sukhodolov, 2001; Sukhodolov and Rhoads, 2001; Rhoads and Sukhodolov, 2004) and bed 

discordant confluences (Biron et al., 1993; Biron et al., 1996a; Leclair and Roy, 1997; Biron 

et al., 2002; Boyer et al., 2006). As expected, the downstream reduction of the momentum 

flux ratio between the tributaries and the Rhone is correlated with the reduction of the 

discharge ratios presented in Figure 3-12. This behaviour is directly linked to the important 

reduction of the tributaries drainage areas compared to those of the Rhone River (Figure 3-7). 
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Figure 3-14: Momentum flux ratios between the tributaries and the Rhone  

for the 2 and 5 years return period floods. 

3.2 Experimental set-up  

From the analyses performed in section 3.1, it can be concluded that the confluences of the 

Upper Rhone River (representative of a regulated alpine basin) are characterized by relatively 

small steep tributaries joining the main channel at large angles. During the channel-forming 

events, the tributaries generally flow in transcritical regimes (Fr~1) and carry important 

quantities of poorly-sorted sediments. Discharge ratios as well as the resulting momentum 

flux ratios between the tributaries and the main channel are quite small. An important 

morphological feature is the always observed important bed discordance between the 

confluent channels. The main characteristics used for designing the experimental set-up and 

the experimental conditions are summarized in Table 3-1. Tributaries where some data are 

missing were not considered here. 

As described in Chapter 2, these characteristics have not yet been considered in 

previous studies concerning confluences. Therefore, the design of a new facility is required. It 

is important to mention that the experimental set-up is not a scale of a particular confluence, 

but a schematized configuration with main parameters representative of the Rhone. The aim is 

to reproduce the dominant hydro-morpho-sedimentary processes.  
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Table 3-1: Geometrical characteristics of the main confluences in the Upper Rhone basin. 

Angle [°] B t /B m B m /B p-c
Tributary bed 

slope [%]
Q2 t /Q2 m Q5 t /Q5 m Fr tQ2 Fr tQ5 M r _Q2 M r _Q5

Average 62 0.22 1.02 1.1% 0.10 0.09 0.83 0.83 0.12 0.08
Max 90 0.54 1.27 4.0% 0.32 0.31 1.29 1.30 0.45 0.30
Min 30 0.07 0.71 0.0% 0.01 0.01 0.03 0.03 0.00 0.00  

The experimental facility was built using existing straight glass sided flume 8.5 m long and 

0.50 m wide located at the EPFL. The width of this channel, assumed as the main channel 

(Bm/Bp-c = 1), was used to determine the width of the tributary channel, which was made in 

PVC. From Table 3-1, the average value of Bt/Bm is equal to 0.22 for the Rhone River. It 

would result in quite a small tributary (~0.10 cm). In order to avoid wall effects, the tributary 

width was chosen equal to 0.15 cm, that corresponds to a ratio Bt/Bm = 0.30. This value is a 

little higher than the average found in the Rhone basin but is still representative for the 

studied zone (Figure 3-9).  

The tributary (4.9 m long) and the main channel are connected with an angle of 90°, at a 

distance of 3.60 m downstream of the inlet of the main channel. The angle corresponds to the 

maximum value measured in the studied zone (Figure 3-10). In the confluence zone, a 

widening region has been defined and allows the study of the three different configurations of 

local tributary widening: the Small (Bw=0.30 m and Lw=0.45 m), the Medium (Bw=0.45 m and 

Lw=0.45 m) and the Large configuration (Bw=0.45 m and Lw=0.60 m). Here, Bw and Lw 

denotes the width and the length of the widening respectively. More details about the widened 

configurations are given in section 3.3.3. The choice of 90° confluence angle is based on the 

fact that the lateral valleys of the basin are almost perpendicular. The present state of the 

Rhone confluences zones is the result of the river training works. Consequently the current 

angles are not truly natural. In addition, with the local widening, a self-natural dynamic is 

expected in the confluence zone, which includes the adjustment of a natural angle. 

The experimental set-up is schematically shown in Figure 3-15. All the results presented 

in this document are related to the reference axes (X, Y, Z). 
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Figure 3-15: Experimental set-up. The dashed rectangle showing the zoom of the confluence zone is 

presented separately in Figure 3-18. 

3.3 Laboratory tests 

3.3.1 Water discharge scenarios 

In the present investigation, the long-term averaged state of a dynamic equilibrium is 

investigated and therefore, an approach based on constant flows and sediment discharge was 

adopted. The definition of the discharge scenarios was primarily based on the analyses of 

width-to-depth ratios (B/h). The first criterion was to have B/h≥5 in the main and post-

confluence channels in order to avoid wall effects (Yalin, 1971). Preliminary flow 

calculations using the one-dimensional model HEC-RAS, limited the total discharge, Qp-c to 

20 l/s. Three discharge scenarios were then chosen in the range of the discharge ratios Qt/Qm 

presented in Figure 3-12 and summarized in Table 3-1: so-called “low discharge scenario”, 

where Qt=2 l/s and Qm=18 l/s (Qt/Qm=0.11), “intermediate discharge scenario” with Qt=2.6 l/s 

and Qm=17.4 l/s (Qt/Qm=0.15) and “high discharge scenario” where Qt=3.7 l/s and 

Qm=16.3 l/s (Qt/Qm=0.23).  
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3.3.2 Sediment characteristics and solid discharge 

For the experiments, poorly-sorted sediments with d50 = 0.82 mm, dm = 2.3 mm and 

d90 = 5.7 mm were chosen for the bed material and the sediment supply. Sediments are only 

introduced in the tributary and there is no sediment transport in the main channel upstream of 

the confluence. This procedure aims at reproducing the typical situation river confluences 

during tributary flood events where the amount of the tributary solid discharge is relatively 

more important than that of the main channel. 

Figure 3-16a shows the particle size distribution of the used sediments, which are 

constituted by a mixture of 80% sand (0 - 4 mm) and 20% gravel (4-8 mm). A picture of the 

mixture is depicted in Figure 3-16b. 

 
 

Figure 3-16: a) Grain size distribution of the sediments used for the experiments and b) a picture of 

the mixture of sediments. 

The sediment characteristics and the solid discharge adopted for all experiments satisfy two 

requirements:  

• The grain size distribution, characterized by the dimensionless grain size distribution 

with respect to the average diameter (dm) is representative of the Upper Rhone River. 

The gradation coefficient of the used mixture is σ = 4.15, which is representative of the 

grain size distributions found in the Rhone (Figure 3-17). The density of the sediments 

(ρ s) is 2.650 kg/m3; 

• The solid discharge produces longitudinal slopes in the tributary that are representative 

of those found in the Upper Rhone basin (Table 3-1). Preliminary one-dimensional 

calculations were performed using the Meyer-Peter and Mueller (1948) sediment 

transport formula. The formula was applied for the three tributary discharges (Qt=2.0, 
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2.6 and 3.7 l/s) and the average sediment diameter (dm=2.3 mm). For the preliminary 

calculations, armouring effects were not considered. Results show that a constant solid 

discharge of 0.3 kg/min leads to theoretical equilibrium bed slopes in the tributary 

between 1.0 and 2.0%. Froude Numbers are close to 1. Therefore, it was decided to run 

all the experiments with 0.3 kg/min.  

 

Figure 3-17: Dimensionless grain size distribution of the bed surface of the Rhone River at different 

locations (see Figure 3-8) and that of the sediment mixture used for the experiments. 

A simplified analysis for the similarity in sediment transport (Yalin, 1971) with respect to the 

Rhone conditions was performed. Results shown that the size of the adopted sediment (Figure 

3-16) is in the range of those found in the Upper Rhone basin (Figure 3-8). For these 

calculations, a geometric scale of 1/70 was adopted. 

3.3.3 Tributary configurations 

Four geometric configurations of the tributary in the confluence zone have been investigated 

(Figure 3-18). In the “Reference” configuration, the tributary has a constant width of 0.15 m. 

Three local tributary widenings were studied. For the “Small” configuration, the tributary 

width has been symmetrically doubled (Bw = 0.30 m) over a length (Lw) of 0.45 m while the 

“Medium” configuration considers a tributary three times wider (Bw = 0.45 m) within the 
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same length (Lw = 0.45 m). The “Large” configuration is composed by a tributary also three 

times wider (Bw = 0.45 m) over a length Lw = 0.60 m.  

The choice of the widening shape was based on two criteria: (i) the aim of the project is 

to study a tributary widening. Therefore, the maximum width of the enlarged zone was 

limited by the width of the main channel, as wider configurations would result in a local main 

channel widening, and (ii) the length of the tributary was limited by the fact that for longer 

widening, flow reattachment downstream of the entrance of the enlarged zone would occur 

symmetrically and thus the effect of a local widening would be lost. In addition, the small 

widening should neither lead to adverse upstream impacts regarding the flood safety nor to 

considerable morphologic changes in the post-confluence channel.  

 

Figure 3-18: Configurations of the confluence zone (same reference axis as presented in Figure 3-15). 

3.4 Tests procedure, instrumentation and measurements 

For each test, a systematic procedure was followed. Before each experiment, a movable bed 

composed of the sediment material described in section 3.3.2 was put in place. The main and 

post-confluence channel beds are horizontal (Figure 3-19). In order to accelerate the 

development of the bed discordance, a step of 0.03 m is placed at the mouth of the tributary 

and the initial bed slope of the tributary is around 0.5%. The step and the slope are lower than 

the expected discordance and the theoretical slope calculated by means of the Meyer-Peter 

Formula (section 3.3.2). Hence, it forces a process of aggradation due to overloading in the 

tributary (Ribberink and Van der Sande, 1985; Seal et al., 1997).  
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Figure 3-19: Example of the initial bed at the post-confluence channel and at the widened zones. The 

axes of the coordinate systems are not placed at the origin.  

The constant water discharges are supplied by two independent pumps, connected upstream of 

each channel. The discharge in the main channel (Qm) is measured by a calibrated V-notch 

weir, installed upstream of the inlet of the channel (Figure 3-20a) whereas the discharge of the 

tributary channel (Qt) is measured by an electromagnetic flowmeter (Figure 3-20b). An 

adjustable tailgate at the end of the post-confluence channel is used to control flow depths 

within the flume (Figure 3-20c).  

 

Figure 3-20: Instrumentation for controlling water discharges and downstream water elevation in the 

confluence flume. a) V-notch weir installed at the entrance of the main channel. b) Electromagnetic 

flowmeter installed at the entrance of the tributary channel. c) Adjustable tailgate placed downstream 

of the post-confluence channel to control water levels. 
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The sediment management system comprises four parts:  

• Sediments are automatically supplied at the tributary by a conveyor belt 5 m long and 

0.50 m wide installed upstream of the channel (Figure 3-21a).  

• A timer, coupled with a velocity regulator device (Figure 3-21b), allows quite slow 

constant belt displacements (0.5 m/h).  

• At the exit of the post-confluence channel, a sediment trap removes the sediment 

transported by the experiment (Figure 3-21c).  

• A weighting scale, placed beside the sediment trap allows the control of the sediment 

volume feed and removed from the flume (Figure 3-21d). 

  

  

Figure 3-21: Instrumentation for sediment management during the experiments. a) Conveyor belt for 

the sediment feed, b) Velocity regulator for the conveyor belt. c) Sediment trap for removing the 

transported sediments. d) Scale used for the control of the sediment balance. 

Before the beginning of each experiment, the flume is slowly filled in order to avoid sediment 

transport during this stage of the test. Once the system is full (water depth around 20 cm), 

both main and tributary discharges are adjusted to the required values. After that, the 

downstream tailgate is slowly lowered until the downstream water depth reaches 7 cm, which 

corresponds to the approximated normal depth of the flow, calculated interactively using 



Chapter 3: Design of the experiments 

45 

Manning-Strickler and the Meyer-Peter formulas for the given conditions (Q = 20 l/s, 

B = 0.50 m, Qs = 0.30 kg/min and dm = 2.3 mm).  

Several campaigns of topographic surveys are performed during a run. Bed elevations 

are measured using a Mini EchoSounder probe (UltraLab UWS) that works with an 

ultrasonic-impulse-run time procedure with a precision of ±1 mm (Kantoush et al., 2008). The 

instrumentation is installed on a movable frame that covers part of the experimental set-up, 

3.80 m in the main and post-confluence channels and 3.00 m in the tributary (Figure 3-15). 

The frame allows automatic movements in the X direction. For each series of measurement, 

12 longitudinal profiles (ΔX= 9 mm) laterally spaced by 0.04 m are measured in the main and 

post-confluence channels. On the tributary, measurements are done in cross-sections spaced 

by 0.05 m near the tributary mouth (0.50 m<Y<0.95 m) and by 0.20 m in the upstream reach. 

For the reference configuration, the cross-sections of the tributary are rectangular and for this 

reason, only one point at the middle of the section is measured. In the enlarged zones, several 

cross sections in the X-direction spaced by 0.05 m are measured. As for the main and post-

confluence channels, the distance of the measured points in each cross-section is 9 mm.  

  

Figure 3-22: a) Ultrasonic limnimeter water level measurements and b) mini Echosounder for 

measuring the bed elevations. 

As the MiniEchoSounder is an intrusive device, the sediment discharge is stopped and the 

water level in the confluence flume is slowly raised with the downstream tailgate before 

starting a bed topography survey. Water levels in the confluence flume are increased until the 

total halt of bed load transport. After obtaining the measurements, the contrary procedure is 

launched. The downstream tailgate is lowered and the solid discharge restarts. The 

increase/decrease of the water levels should be done carefully in order to avoid high velocity 

gradients and consequently sediment transport in the system that is not correlated to 

operational conditions.  
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Before starting the bed topography measurements, water levels in several cross-sections 

(depending on the configuration) on the tributary, main and post-confluence channels are 

recorded. Measurements are performed using automatic ultrasonic limnimeters (precision 

±1 mm, Figure 3-22) during 10 s with a frequency of 128 Hz. For each point, an average 

value is considered for the analyses.  

Each experiment was conducted until equilibrium conditions were reached. The 

achievement of equilibrium in each run is mainly assessed on the basis of the bed evolution 

between two times steps and takes between 22 and 24 hours. Sediment volume entering and 

leaving the flume are weighed and helps the decision of stopping the experiment. 

Once the equilibrium is reached, flow visualization techniques relying on colour dye 

and video camera are used to help the identification of the interactions between flow, 

sediment transport and bed morphology. After that, the solid discharge is stopped and the 

water level is raised again. Both supply pumps are turned off and the confluence flume is 

slowly emptied. Subsequently, pictures of the final morphology are taken and different 

samples of the bed surface material (~200 g) are collected at different locations, depending on 

the configuration that is studied. A grain size analysis by means of a hand sieving is 

performed. The objective of the grain size analyses is to identity qualitatively the behaviour of 

the sediment deposition and sediment sorting in response to the flow conditions.  

Previous to the beginning of a new run, the deposed sediments are removed and the bed 

is reconstructed with new sediments. Furthermore, in order to avoid the influence of the grain 

size segregation due to the run, sediments are not recycled.  

For two of the runs, the low discharge with the reference configuration, so-called Low-

Reference and low discharge with the small widening, so-called Low-Small, velocity 

measurements were performed once equilibrium conditions had been attained. For the entire 

duration of the measurements, the main and tributaries discharges, as well as the solid 

discharge were maintained constant. Non-intrusive measurements of velocity profiles were 

made with an Acoustic Doppler Velocity Profiler (ADVP) developed at EPFL. The working 

principle of the ADVP has been reported by Lemmin and Rolland (1997), Hurther and 

Lemmin (1998), Blanckaert and Graf (2001) and Blanckaert and Lemmin (2006). The ADVP 

consists of a central emitter surrounded by four receivers, placed in a water filled box that 

touches the water surface by means of an acoustically transparent mylar film. It measures 

profiles of the quasi-instantaneous velocity vector, )t)(wv,u,()t(v =r
, from which the time-
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averaged velocity vector, )wvu( ,,v =
r

, the Reynolds stresses, jivv ′′− ρ  (i,j = x,y,z) and higher 

order turbulent correlations can be computed. Henceforward overbars on the time-averaged 

velocities will be dropped. Measurements were recorded with a sampling frequency of 

31.25 Hz during a period of 180 s. Several cross sections were measured in the main and post-

confluence channels. More details about the velocity measurements can be found in Chapters 

5 (Low-Reference test) and 6 (Low-Small test).  

A summary of the experimental runs is presented in Table 3-2. It shows the 

characteristics of each water discharge scenario and the confluence configurations, as well as 

the duration of each test and the time schedule where water levels and bed topography 

measurements were made. Time steps adopted for the water level and bed topography 

measurement campaign are not regularly spaced.  

Table 3-2: Summary of the tested confluence configurations and discharge scenarios. 

Low 
discharge

18.0 2.0 0.30 23 23

1; 
18; 
21; 
23

yes 22 22

1; 
13; 
17; 
20; 
22

yes 22 22

1; 
16; 
20; 
22

no 22 22

1; 
16; 
20; 
22

no

Intermediate 
discharge

17.4 2.6 0.30 23

1; 3; 
11; 
15; 
19; 
23

1; 3; 
11; 
15; 
19; 
23

no 23 23

1; 
16; 
20; 
22; 
24

no 22 22

1; 
16; 
20; 
22

no 22 22

1; 
16; 
20; 
22

no

High 
discharge

16.3 3.7 0.30 24
0; 
24

1; 8; 
17; 
21; 
24

no 22 22

1; 7; 
16; 
20; 
22

no 22 22

1; 
16; 
20; 
22

no 22 22

1; 
16; 
20; 
22

no

1) Test duration [h]
2) Time of water level measurements [h]
3) Time of bed elevation measurements [h]
4) Velocity measurements with ADVP [yes/no] 

Run

Description

1
Q m 

[ls-1]

 Q t 

[ls-1]

 Qs t  

[Kg/min]

Legend: 

3 4 12 2 3 4 1 3 42 3 4 1 2

Reference Small Medium Large
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4. Test results 
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4.1 General observations 

In this chapter, the results of the test Low-Reference (see Table 3-2) are used to illustrate the 

common hydro-morphological features observed in all experiments. For the widening tests, 

there is an important variability of the morphological responses in the widened zones which 

depends on the discharge ratio and the widening shape. Therefore, it is not discussed in this 

chapter. The analyses of the complete database, including the interaction between the hydro-

morpho-sedimentary features at equilibrium are reported in Chapters 5, 6 and 7.  

The main common morphological features at equilibrium can be described as follows: 

• Deposition bar: For all experiments, there is formation of a deposition bar along the 

inner bank downstream of the confluence. The bar reaches its maximum elevation near 

the inner bank just downstream of the confluence. Hence, bar height decreases 

downstream. Figure 4-1 shows the equilibrium topography of the entire measurement 

domain (0<X<3.8 m and 0<Y<3.5 m) for the test Low-Reference. Figure 4-2a shows an 

upper view of the main and post-confluence channels where the sediment bar developed 

for the same test can be recognized.  

• Bed discordance: As illustrated by Figure 4-2b, significant bed discordance between the 

mouth of the tributary and the main channel is observed.  

• Absence of marked scour hole: In all tests no important scour hole at equilibrium was 

observed, which differs considerably from the existing morphologic models of 

confluences (Best, 1988). There is only a slight erosion that occurs along the sediment 

bar near the outer bank of the post-confluence channel (Figure 4-2).  

• Grain sorting: In the confluence zones, there is an important grain sorting of the 

sediments forming the bed surface. The differences of the sediment characteristics can 

bed observed in the pictures shown in Figure 4-2b and in the grain size distributions 

depicted in Figure 4-3.  
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Figure 4-1: Bed elevations of the entire measurement domain 0<X<3.8 m and 0<Y<3.5 m for the test 

Low-Reference (Qr = 0.11). The locations of the longitudinal profiles presented in Figure 4-4 are 

indicated by the dashed lines. Sediment bar is delimitated by the full ellipse whereas the erosion zone 

is indicated by the dashed ellipse. 

 

Figure 4-2: a) Upper view of the main and post-confluence channels for the test Low-Reference 

(Qr=0.11) showing the sediment bar, the erosion zone and the positions of the cross-sections shown in 

Figure 4-4 and b) upstream view of the tributary channel showing the bed discordance and the grain 

sorting. 
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Figure 4-3: Sample locations at the confluence zone and their respective grain size distributions for 

the test Low-Reference. 

Concerning the common flow features, the following behaviours can be highlighted:  

• Flow stagnation zone: The deflection of both confluents creates a flow stagnation zone 

at the upstream corner of the confluence (Figure 4-4a and Figure 4-5). It can be 

recognized by the increase in the flow depth.  

• Backwater effects on the main channel: The presence of the deposition bar reduces the 

flow sectional area immediately downstream of the confluence. It produces an increase 

of the upstream flow energy that is followed by a water level raise and a decrease of the 

energy gradient (Figure 4-4b, c). The decrease of the energy gradient can be noticed by 

the steadiness in the water levels upstream of the confluence.  

• Flow acceleration: The reduction of the flow sectional area induces flow acceleration 

along the sediment bar (Figure 4-4). 

• Shear layer zone: For all experiments, shear layers are developed in the contact of the 

confluent flows. Figure 4-5 illustrates an upper view showing the shear layer zone at the 

surface of the flow for the run Low-Reference.  
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Figure 4-4: Longitudinal profiles of the water surface elevation and the equilibrium bed elevation 

measured in different time-steps at Y= 0.45 m (near the outer bank), Y = 0.25 m (axis of the channel) 

and Y = 0.05 m (near the inner bank). The initial bed elevations are indicated by the dashed lines. The 

flow stagnation zone (shadow ellipse), the backwater effects (dashed ellipses) and the flow 

acceleration (arrow) are indicated in the longitudinal profiles. 

 

Figure 4-5: Flow visualization of the main and post-confluence channels for the run Low-Reference. 

Colour dye is only injected in the tributary. 
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4.2 Systematic documentation of all tests. Description of the Appendixes 

The results of each test are systematically presented in the Appendixes at the end of the 

report. Each Appendix is structured in a standard form and corresponds to a certain test. The 

twelve appendixes are listed in Table 4-1. 

Table 4-1 : List of the Appendixes  

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

Windening

0.45 0.60

- -

0.30 0.45

0.45 0.45

 

Each Appendix (*1)is divided in the following sections:  

• *.1: Summary of the test including the initial hydro-sedimentary conditions (sub-section 

*.1.1), the equilibrium flow depths measured at different points in the flume (sub-

section *.1.2) and the main morphological features including the bed discordance 

(measured at the mouth of the tributary at X=0.60 m), the maximum elevation of the bar 

and the volume of sediments deposed above the elevation curve Z=0.02 m. (sub-section 

*.1.3). This elevation is considered as reference for the calculation of the deposited 

sediment volumes for all experiments; 

• *.2: Bed topography maps of the entire measurement domain (0<X<3.8 m and 

0<Y<3.5 m) measured at different time-steps; 

• *.3: Longitudinal and cross-sections showing the bed elevations and water levels 

measured in different locations at different time-steps. The longitudinal profiles along 

the main and post-confluence channels at Y=0.05 m, Y=0.25 m and Y=0.45 m and 

                                                 

1 Is a placeholder for the Appendix’s name: A to L (see Table 4-1). 
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longitudinal profile along the axis of the tributary (X=0.60 m) are presented in the sub-

section *.3.1. The sub-section *.3.2 illustrates four cross-sections of the widened zone, 

two along the Y-direction (X=0.50 m and X=0.72 m for the Small tests and X=0.44 m 

and X=0.76 m for the Medium and Large tests) and two along the X-direction at the 

tributary mouth (Y=0.54 m and Y=0.64 m). This section is only presented for the 

widened tests (Appendixes D-L); 

• *.4: Pictures showing the surface flow in the main and post-confluence channels at the 

equilibrium conditions. Colour dye is injected in the tributary; 

• *.5: Pictures of the confluence zone showing the equilibrium bed morphology; 

• *.6: Grain size distributions of the different bed samples. 

This systematic documentation of all tests is beside the analyses of the following 

chapters, a ride and useful database for validation and calibration of morphodynamic 

numerical models. 
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5. Flow and sediment dynamics in channel confluences* 

 

                                                 

* This chapter has been submitted for publication in the Journal of Geophysical Research – Earth Surface. 
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5.1 Introduction 

In fluvial networks, confluences are associated with significant changes in flow dynamics, 

sediment transport and bed morphology. Understanding the hydro-morpho-sedimentary 

processes at confluences is important in river management and engineering, and relevant with 

respect to hazard mitigation, ecological diversity, river training and/or rehabilitation projects. 

The hydrodynamics as well as the sedimentological and morphological processes in 

confluence zones involve several variables (Gurram et al., 1997, Huang et al., 2002), such as 

the number of adjoining channels, the confluence angles, the shape and slope of the channels, 

the discharge and momentum flux ratios, the bed material, the sediment supply, the planform 

of the confluent channels etc. Laboratory experiments are commonly carried out in simplified 

schematized configurations that allow isolating and/or accentuating certain parameters and 

processes under controlled conditions. 

Best (1987) presented a descriptive model of the flow dynamics at confluences based on 

laboratory experiments conducted in a small flume with two 0.15 m adjoining channels of 

rectangular cross-section. These experiments were performed with several confluence angles 

and discharge ratios under fixed horizontal bed conditions without sediment transport. The 

tributary and main channels were bed concordant, i.e., the tributary and main channels’ mouth 

elevations were the same. His model distinguished six different zones in confluence channels: 

flow deflection, flow stagnation, flow separation, maximum velocity, shear layer and flow 

recovery (Figure 5-1). The flow stagnation zone is created by a deflection of both streams at 

their junction and is associated with an increase of pressure and flow depth and a decrease of 

flow velocities and shear stresses. The directional change of the tributary creates a zone of 

flow separation with horizontal recirculation due to the flow detachment from the inner wall 

in the post-confluence channel and its reattachment further downstream (Best and Reid, 

1984). The geometry of the separation zone is important because it delimits the effective 

width of the post-confluence channel and is an area of reduced pressure and recirculating flow 

where sediment tends to accumulate. The maximum velocity zone appears downstream of the 

junction of the flows at the contracted cross-section besides the separation zone. Shear layers 

are formed along the contact of the zones of flow separation and of maximum velocity, and 

they are characterized by high turbulence intensities and shear stresses and also the presence 

of well-organized flow structures (Biron et al., 1993, De Serres et al., 1999, Sukhodolov and 

Rhoads, 2001, Rhoads and Sukhodolov, 2004, Boyer et al., 2006). As the shear layer expands 
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laterally and dissipates, the flow recovers towards a straight shear flow in the post-confluence 

channel.  

 

Figure 5-1: Descriptive model of flow dynamics at a channel confluence with concordant beds 

(slightly modified from Best, 1987). 

Flow at river confluences is highly three-dimensional and often characterized by the presence 

of helical flow cells. The nature and characteristics of these cells have been the subject of a 

long-standing debate (Mosley, 1976; Ashmore and Parker, 1983; Fujita and Komura, 1989; 

Rhoads and Kenworthy, 1995; McLelland et al., 1996; Bradbrook et al., 1998; Bradbrook et 

al., 2000a; Bradbrook et al., 2000b; Lane et al., 2000; Rhoads and Sukhodolov, 2001; Weber 

et al., 2001b; Parsons et al., 2007; Biron and Lane, 2008). Their presence/absence, the number 

of cells as well as their intensity depend on many parameters, such as the confluence angle, 

the water discharge ratio between the tributary and main channels and the bed discordance 

between the tributary and main channels mouths. Mosley (1976) was the first to observe and 

describe the helical cells based on experiments in a laboratory flume. In his set-up, the post-

confluence channel had been cut in erodible material and was free to adjust to the 

experimental solicitations. He described two “back to back” helical cells which converge at 

the surface in the centre of the channel and diverge near the bed and are often associated with 

the confluence scour. Rhoads and Sukhodolov (2001) support the fact that helical cells can be 

present in a confluence zone, but claim that they are not characteristic features of all 

confluences. Bradbrook et al. (2001) have investigated by means of three-dimensional 

numerical simulations the roles of channel planform curvature and bed discordance in the 

formation of helical cells. They have shown that in some cases, a single helical cell forms as 

the flows join, which is consistent with laboratory measurements by Weber et al. (2001b). 

The majority of foregoing experimental research on confluences uniquely considered the flow 

field over fixed and flat bed topography. The few existing laboratory studies on bed 
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morphology at channel confluences include Ashmore and Parker (1983), Best, (1988) and 

Mosley (1976). Best (1988) was the first to present a conceptual model of the bed 

morphology, based on systematic experimental tests performed in asymmetrical confluences 

with equal channel widths (0.15 m) and concordant beds. Several discharge ratios (around 0.5 

to around 1.5) and different confluence angles between the tributaries (15° to 105°) were 

considered. Well-sorted sand was used for the bed constitution and sediment supply. Best's 

(1988) conceptual model was further refined by Best and Rhoads (2008), who described the 

bed morphology of river confluences by five main features that are directly linked to the flow 

dynamics discussed above: 1) a scour hole, associated to the increase of flow velocity and 

turbulence within the confluence zone; 2) tributary mouth bars with associated avalanche 

faces formed at the mouth of one or both tributaries and often sloping into the scour hole; 3) a 

mid-channel bar; 4) bank-attached lateral bars, associated with regions of flow deceleration 

and/or flow separation and 5) a region of sediment accumulation near the upstream corner, 

probably associated with the flow stagnation zone. Figure 5-2 illustrates the first, second and 

fourth features. Best (1988) suggested that the major controls of these features are the junction 

angle and the discharge ratio, while for Rhoads and Kenworthy (1995) the bed morphology of 

small confluences is highly responsive to changes in the momentum flux ratio 

Mr=ρQUt/ρQUm between the main (subscript m) and the tributary (subscript t) channels where 

ρ is the water density (kgm-3), Q the discharge (m3s-1) and U the mean velocity (ms-1). 

 

Figure 5-2: Schematic bed morphology of an asymmetric confluence with bed concordance proposed 

by Best (1988).  
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The consideration of confluences with discordant beds is relatively recent, even if this 

characteristic morphology is common in nature (Kennedy, 1984). Different from the bed 

concordant confluences discussed above, bed discordant confluences are those where the 

tributary and main channels mouth elevations are not the same. Field measurements (Biron et 

al., 1993; Gaudet and Roy, 1995; De Serres et al., 1999), laboratory experiments (Best and 

Roy, 1991; Biron et al., 1996a; Ghobadian and Bajestan, 2007), and numerical modelling 

(Bradbrook et al., 2001; Biron et al., 2004) have demonstrated that the presence of a bed 

discordance between the confluent channels modifies considerably the flow in a confluence 

zone, affecting the sediment transport and the bed morphology. In addition, it can increase the 

turbulence intensity in the shear layer and consequently increase flow mixing downstream of 

the confluence (Gaudet and Roy, 1995; Biron et al., 2004). By means of field measurements, 

Leclair and Roy (1997) proposed different models of the hydro-morpho-sedimentary 

dynamics at a confluence with discordant beds during low flow and high momentum flux 

ratio, Mr≥1. Their models relate variations of the tributary mouth bar to changes in Mr and 

distinguishes between a phase of bar erosion for Mr~1 and a phase of bar construction and 

full bar extension for Mr>>1. Recently, Boyer et al. (2006) analysed in detail the flow 

structure and its interaction with sediment transport and bed morphology at the same river 

confluence and proposed two conceptual models of sediment transport and morphological 

changes, one for Mr>1 and the other for Mr<1. 

In spite of these advances in the understanding of the dynamics of confluences, very 

little attention has been devoted to steep river channel confluences with coarse bed material 

that can be found in alpine environments. Mountain torrents carrying large sediment loads 

often meet asymmetrically the main channel at the valley bottom at a large angle. These 

characteristics, associated to the relative low discharge and momentum flux ratios present 

important challenges, most notably for flood protection, hazard mitigation and river 

rehabilitation. Current knowledge on river channel confluences may not be applicable to these 

situations. Therefore, the objectives of this paper are: 

• To observe, measure and quantify the morphologic, sediment transport and flow 

processes in controlled laboratory settings that are representative of confluences such as 

those found in alpine environments; 

• To gain insight in the interacting hydro-morpho-sedimentary dynamics channel 

confluences. 
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5.2 The experiment 

The experimental design, the sediment characteristics and the flow and sediment discharges 

are representative of the main confluences of the Upper Rhone River, upstream of the Lake 

Geneva in Switzerland. Because the banks of the Upper Rhone River are stabilized and the 

bed is armoured, the main sediment supply is provided by the steep tributaries at high flows. 

A summary of the geometric as well as the discharges characteristics of the Upper Rhone’s 20 

main confluences is presented in Table 5-1, where B is the channel width, Q2 and Q5 

represent the two and five year return period floods, respectively and the subscripts t, m and 

p-c represents the tributary, main and post-confluence channels respectively (Figure 5-3). The 

Froude numbers at the tributary (Frt) and the momentum flux ratios (Mr) between the 

tributary and the main channels estimated for Q2 and Q5 are also shown in Table 5-1.  

Table 5-1 : Geometrical and hydraulic characteristics of the main confluences of the Upper 

Rhone River in Switzerland. 

Angle [°] B t /B m B m /B p-c
Tributary bed 

slope [%]
Q2 t /Q2 m Q5 t /Q5 m Fr tQ2 Fr tQ5 M r _Q2 M r _Q5

Average 62 0.22 1.02 1.1% 0.10 0.09 0.83 0.83 0.11 0.08
Max 90 0.54 1.27 4.0% 0.32 0.31 1.29 1.30 0.45 0.30
Min 30 0.07 0.71 0.0% 0.01 0.01 0.03 0.03 0.01 0.01  

The experimental facility consists of a confluence flume with smooth vertical banks where the 

main channel is 8.5 m long and 0.50 m wide. The 4.9 m long and 0.15 m wide tributary 

channel is connected at an angle of 90° to the main channel 3.60 m downstream of the inlet 

(Figure 5-3). The results discussed in this paper are related to the reference axes (X, Y, Z) 

represented in Figure 5-3. 

The intersection angles of the tributaries with the upper Rhone River are highly variable 

(Table 5-1). For the present project, the maximum value of 90° has been adopted. The ratio of 

the tributary width to the main channel width of Bt/Bm = 0.3 and of the main channel width to 

the post-confluence channel width of Bm/Bp-c = 1 are representative of the confluences in the 

Upper Rhone River.  

Sediment characteristics and the flow and sediment discharges were also chosen such 

that conditions were as close as possible to those encountered in the confluences of the upper 

Rhone River. Flow discharges in the main channel and the tributary were Qm = 18 ls-1 and 

Qt = 2 ls-1, respectively, leading to a discharge ratio of Qt/Qm = 0.11, width-to-depth ratios in 

the main channel, the post-confluence channel and the tributary of 5, 7 and 9, respectively 

(Table 5-2), and a momentum flux ratio of Mr = 0.20. Flow was rough turbulent, 
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Re*=u*ks/ν>70, in the main, tributary and post-confluence channels. Re* represents the particle 

Reynolds number, u* the shear velocity [m/s] defined as sgHEu =∗ where H and Es are the 

average flow depth and the energy gradient, ks is the characteristic particle size [m] and ν is 

the kinematic viscosity [m2s-1].  

The sediment characteristics satisfy two requirements: (i) they yield a longitudinal slope 

in the tributary that can be found in the Upper Rhone basin; (ii) their grain size distribution is 

representative of alpine environments. Poorly-sorted sediments with d50 = 0.82 mm, d90 = 

5.7 mm and a sorting coefficient of σ = 0.5 (d84/d50 + d50/d16) = 4.15, were used for the bed 

material and the solid discharge. The particle size distribution of the sediment is shown in 

Figure 3. The ratio between flow depth and median grain diameter of the bed (h/dm) varies 

from 5 (tributary) to 48 (main channel). These values are representative of those found in the 

Upper Rhone basin.  

Table 5-2 : Characteristics of the experiment 

18.0 2.0 0.11 0.3 0.32 1.30 0.70 0.2 48 5 19 5 9 7

h/d m B/h

Main Trib.
Post-
confl.

Main Trib.
Post-
confl.

Fr m Fr t Fr p-c M r
Q m 

[ls-1]

 Q t 

[ls-1]
Q t /Q m 

 Qs t 

[kg/min]

 

The bed was initially covered with the poorly sorted sediment mixture in the main channel 

and the tributary. Before the beginning of the run, the bed was flattened in the main and post-

confluence channels and had an initial longitudinal slope of around 0.05% in the tributary 

near its mouth. Constant water discharges of 18 ls-1 and 2 ls-1 were provided to the main 

channel and the tributary, respectively, and a constant solid discharge of 0.3 kg/min was fed 

to the tributary only. An adjustable tailgate at the end of the post-confluence channel 

controlled the flow depth within the entire flume. The water level at the end of this channel 

was kept constant at 0.07 m. During the experiment, sediment volumes entering and leaving 

the flume were weighed. Achievement of equilibrium was assessed on the basis of changes in 

the bed morphology and of the sediment budget. Equilibrium conditions occurred 22 hours 

after the beginning of the experiment. 

The flow, sediment dynamics and topography in confluences vary in time in a 

continuous adaptation to intermittent floods in the main and tributary channels. Their 

variations can be interpreted as fluctuations superimposed on a dynamic state of equilibrium 

that corresponds to a long-term average. The adoption of constant flow and sediment 
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discharges in the experiments is intended to investigate this long-term averaged state of 

dynamic equilibrium.  

Water levels and bed topography were respectively measured during the experiments 

with ultrasonic gauges and a Mini EchoSounder (Kantoush et al., 2008). Instruments were 

installed on a movable frame that covered a region of 3.80 m by 3.00 m in the confluence 

zone as shown in Figure 5-3. Upstream flow discharges were accurately measured by means 

of a calibrated V-notch weir on the main channel and a digital flow meter on the tributary 

channel, respectively. At the end of the experiment, samples of the surface bed material were 

collected at four different locations (S1, S2, S3 and S4 shown in Figure 5-3). Grain size 

analysis by means of hand sieving was carried out. 

 

Figure 5-3: Experimental facility and sieving curve of the sediment. The locations of the cross sections 

where velocity measurements were performed are indicated by the dashed lines and the locations of 

the bed samples by the dark circles. The limit between the main channel and the post-confluence 

channel is the tributary axis at X = 0.60 m. 

Velocity measurements were performed once equilibrium conditions had been attained. For 

the entire duration of the measurements, the main and tributary discharges, as well as the solid 
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discharge were maintained constant. Non-intrusive measurements of velocity profiles were 

made with an Acoustic Doppler Velocity Profiler (ADVP) developed at École Polytechnique 

Fédérale Lausanne (Switzerland). The working principle of the ADVP has been reported by 

Lemmin and Rolland (1997), Hurther and Lemmin (1998), Blanckaert and Graf (2001) and 

Blanckaert and Lemmin (2006). The ADVP consists of a central emitter surrounded by four 

receivers, placed in a water filled box that touches the water surface by means of an 

acoustically transparent mylar film. It measures profiles of the quasi-instantaneous velocity 

vector, )t)(wv,u,()t(v =
r

, from which the time-averaged velocity vector, )u,u,u(v zyx=
r

, the 

Reynolds stresses, ji 'u'uρ−  (i,j = x,y,z) and higher order turbulent correlations can be 

computed. Henceforward overbars on the time-averaged velocities will be dropped. 

Measurements were recorded with a sampling frequency of 31.25 Hz during a period of 180 s. 

Seven cross-sections were measured: three in the main channel (X = 0.13 m, X = 0.35 m and 

X = 0.53 m), one in the axis of the tributary (X = 0.60 m) and three in the post-confluence 

channel (X = 0.68 m, X = 0.83 m and X = 1.33 m). Their locations are presented in the Figure 

5-3. The transverse spacing of the measured profiles was 1.5 cm (Figure 5-4). 

Blanckaert and Lemmin (2006) have shown that a configuration with a central emitter 

symmetrically surrounded by four receivers at an angle of 45° with respect to the principal 

flow direction gives redundant information in all three velocity components and is optimal 

with respect to noise reduction and temporal resolution. This symmetrical configuration, 

however, only allows us to measure in the central region of the channel (0.16 m<Y<0.35 m). 

Near the outer (0.06 <Y<0.16 m) and the inner (0.35 m<Y<0.45 m) banks, measurements were 

made with an asymmetrical configuration of the ADVP (Figure 5-4). The asymmetrical 

configuration, however, only gives redundant information in the streamwise velocity 

component and is characterized by a higher noise level than the symmetrical one. This noise 

does not affect the time-averaged velocities, but it significantly biases the turbulent normal 

stresses and the estimation of the turbulent kinetic energy (tke), as described by Blanckaert 

and Lemmin (2006). 
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Figure 5-4: Top views and cross-sections showing the asymmetrical (a) and symmetrical  

(b) configurations of the ADVP and the correspondent measurements grids.  

Therefore, results on the turbulence properties of the flow reported in the present paper will 

uniquely be based on measurements with the symmetrical ADVP configuration in the central 

zone of the cross-section. Blanckaert (2010) describes in detail the working principle as well 

as the data treatment procedures for measurements with both ADVP configurations. He 

quantified the uncertainty in the measurement of the mean flow and turbulent flow quantities, 

which can be summarized as follows: about 4% in the time-averaged longitudinal velocity ux, 

about 10 % in the cross-stream velocities (uy,uz), about 20% in the turbulent normal stresses 

and the tke. The uncertainty in turbulence measurements increases progressively towards the 

bottom in the lower 20% of the water column. The uncertainty in depth-averaged mean 

velocities is estimated at less than 10%. 
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5.3 Bed morphology, water surface topography and sediment transport 

at equilibrium 

Figure 5-5a shows a view on the equilibrium bed morphology in the main and post-

confluence channels as well as part of the tributary channel. The installed longitudinal slope 

of 0.5% and the water discharge of 2 ls-1 in the tributary were initially unable to transport the 

supplied sediment. As a result, the longitudinal slope in the tributary increased to an 

equilibrium value of about 1.9% which was able to transport the sediment discharge. At 

equilibrium, the flow in the tributary is uniform and supercritical (Fr = 1.30) with a flow 

depth of about 0.02 m (Figure 5-5b) and velocities of about 0.6 ms-1. Flow in the main and 

post-confluence channels is fluvial, with Fr = 0.35 and 0.9, respectively. This leads to a 

change of flow regime at the tributary mouth by means of a weak undulated hydraulic jump 

(Chow, 1959) that only induces a very weak difference in water level elevations at the 

confluence mouth. 

During the slope adjustment from the initial to the equilibrium bed slope, the tributary 

severely aggraded resulting in a pronounced discordance of about 0.09 m between the bed 

levels of the tributary and the main channel, which corresponds to 80 % of the flow depth in 

the main channel upstream of the confluence and to more than four times the flow depth in the 

tributary. This bed discordance, which is clearly illustrated by the longitudinal profiles in the 

axis of the tributary (Figure 5-5b) is one of the most characteristic features of the bed 

morphology in alpine confluences. This characteristic has not yet been observed or 

documented in foregoing laboratory studies on the morphology of river confluences (Mosley, 

1976; Ashmore, 1982; Ashmore and Parker, 1983; Best, 1988), which uniquely concerned 

concordant beds.  
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Figure 5-5: Equilibrium bed topography (t22) at the main and post-confluence channels (a). 

Longitudinal profiles of the water surface elevation and the equilibrium bed elevation at X = 0.60 m 

(axis of the tributary) (b) and Y= 0.05 m (near the outer bank), Y = 0.25 m (axis of the channel) and 

Y = 0.45 m (near the inner bank) (c). The initial level is indicated by the dashed line.  

Longitudinal profiles in the main and post-confluence channels near the outer bank 

(Y = 0.05 m), at the centre (Y = 0.25 m) and near the inner bank (Y = 0.45 m) illustrate the 

evolution of the morphology from the initial to the final state, as well as the equilibrium water 

level (Figure 5-5c). For the present experiment, no scour occurs in the confluence zone and 

only a very slight depression occurs near the outer bank in the post-confluence channel. The 

sediment discharge provided by the tributary builds up an important sediment deposition bar 

near the inner bank. Just downstream of the tributary mouth (X ≈ 0.85 m), this bar reaches its 

maximum height at the inner bank of about 0.09 m, which is comparable to the discordance 

step height (Figure 5-5b). At the location of its maximum height, the bar (level > 0.02 m) 

occupies about half of the width of the post-confluence channel. Further downstream, the 

maximum height of the bar decreases and it is found at some distance from the inner bank, 
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thereby creating a small depression adjacent to the inner bank that corresponds to a corridor of 

fine sediment transport, as indicated by the red dashed line at the crest of the bar. Moreover, 

the bar widens from the confluence mouth to reach its maximum width at about X = 2.6 m. 

Downstream of this cross-section, the morphology recovers towards a flat bed. Pronounced 

transverse slopes occur on the faces of the bar, especially in the confluence zone. At the axis 

of the tributary (X = 0.60 m) the slope of the face is around 47% (~25°) while at the cross-

section of maximum bar height the slope of the avalanche face is around 36% (20°). These 

slopes are slightly lower than the angle of repose of gravel (~40°). The lateral slopes and the 

volume of the deposed material decrease considerable downstream. 

Figure 5-6 illustrates the preferential corridors of sediment transport based on visual 

observations. In the absence of a scour hole, sediment is transferred on the face of the bar near 

the downstream apex of the confluence (Figure 5-6a). The corridor of sediment transport 

widens in the downstream direction and occupies the entire width of the post-confluence 

channel from the cross-section at X = 2.6 m. Pathways correspond to those of Best (1988) for 

high confluence angles. Visual observations (Figure 5-6) clearly show a segregation of the 

transported sediment in the confluence zone. The face of the bar is covered by the coarse 

fraction of the sediment mixture. But this coarse sediment is segregated and its diameter 

increases from the top towards the toe of the deposition bar face. This grain sorting can be 

explained by the balance of the upslope drag force and of the downslope gravitational force 

on the grains: the former scales with the square of the sediment particle diameter whereas the 

latter scales with the cube of the sediment particle diameter (Sekine and Parker, 1992). Both 

forces are in equilibrium for the average particle diameter found on the bar face, whereas the 

downslope/upslope forces are dominant for larger/smaller particles. 

The morphological depression at the inner bank in the post-confluence channel 

coincides with a corridor of transport of fine sediment shown in Figure 5-6b. Visual 

observations shows that these fine sediments are lifted to the upper part of the water column 

by vertical spiral vortices that are locally generated at the downstream corner of the 

confluence. This corridor of fine-sediment transport is much narrower than the bank-attached 

lateral bar that is often associated with a region of flow recirculation in Best's (1988) 

conceptual model. We did not observe flow recirculation in this zone during the present 

experiment. 
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Figure 5-6: View upstream into the tributary from the confluence zone (a) and view downstream into 

the post-confluence channel (b) showing the preferential corridors of sediment transport. 

Grain sorting in the confluence zone is further illustrated by means of some grain size 

distributions (Figure 5-7) sampled at the bed surface (see Figure 5-3 for locations), in the 

main channel (S1), in the tributary (S2), on the top of the sediment deposition bar (S3) and on 

the face of the sediment deposition bar (S4). All of the sampled grain size distributions are 

coarser than the input sediment mixture, which is due to the transport of the fine sediment 

with a diameter of less than about 0.15 mm. With the exception of some deposition in the 

inner-bank corridor (Figure 6b), these fine sediments are washed out of the flume. As 

aforementioned, the bed in the main channel upstream of the confluence is armoured, with a 

d50≈1.8 mm at the surface that is considerably larger than the one of the input sediment 

mixture, d50≈0.8 mm. The bed surface in the tributary (S2) is constituted by a coarse armour 

layer where d50 ~ 4 mm and d90 ~ 8 mm. Sediment sorting is illustrated by the sediment on top 

of the bar (S3: d50~3 mm) that is finer than the tributary sediment, whereas the sediment on 

the face of the deposition bar is coarser (S4: d50~7 mm). 
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Figure 5-7: Grain size distribution of the input sediment and the different samples. The sampling sites 

are localized in Figure 5-3. 
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5.4 Flow dynamics 

This section analyses the flow dynamics over the equilibrium topography. 

5.4.1 The depth-averaged flow field 

The presence of the confluence causes considerable redistribution of the main channel flow. 

Figure 5-8 shows the patterns of the depth-averaged unit discharge (Uxh,Uyh) and the depth-

averaged velocities (Ux,Uy), plotted over the bed topography in the confluence zone. Here h 

represents the local flow depth. Upstream of the confluence, the flow distribution is about 

symmetrical and typical for flow in rather narrow open-channels (see further details in 

section 5.4.2). The confluence globally causes a gradual outwards redistribution of the 

discharge. In the cross-section at X = 1.33 m the unit discharge at the outer bank is more than 

three times higher than at the inner bank. 

 

Figure 5-8: Contours of the bed topography and vector representations of the depth-averaged unit 

discharge (Uxh,Uyh) (full vectors) and the depth-averaged velocities (Ux,Uy) (dashed vectors). 

There is a clear relation between bed topography on the one hand and the magnitude and 

direction of the unit discharges on the other hand. The flow goes around the shallow 

deposition bar at the inner bank and the major part of the discharge concentrates over the 

deepest zone near the outer bank. These topographic effects, also called topographic steering 

can largely be attributed to mass redistribution required by the principle of mass conservation, 

which can be written as: 
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The major contribution in this mass conservation equation is due to the streamwise 

changes in the bed topography and correspondingly in the flow depth, Xh/∂∂ . 

According to the majority of models, sediment transport is not primarily determined by 

the unit discharge, but rather by the local magnitude of bed shear stress bτ
r

, which is in first 

approximation (assuming a constant dimensionless Chézy friction coefficient Cf) proportional 

to the square of the magnitude of the local depth-average velocity 2
y

2
xfb UUC +=τr . The 

momentum input by the tributary flow is clearly visible in the pronounced increase of the 

velocitiy magnitudes near the inner bank from the upstream (X = 0.53 m) to the downstream 

(X = 0.68 m) corner of the tributary mouth (Figure 5-8). These increased velocities play an 

important role with respect to the transport of sediment originating from the tributary, as 

indicated by their coincidence with the observed corridors of sediment transport (Figure 5-6; 

see further in section 5.5).  

5.4.2 The three-dimensional flow field 

The transverse input of mass and momentum by the tributary as quantified by the discharge 

ratio and the momentum flux ratio creates a zone characterized by a highly 3D flow field that 

includes skew-induced cross-sectional flow, turbulence-induced helical flow, unsteady shear 

layers etc. The three-dimensionality of the flow field is readily illustrated by flow 

visualization using colour tracer introduced only in the tributary (Figure 5-9a) and only in the 

main channel (Figure 5-9b). This flow visualization clearly delineates the shear layer where 

flows from the main channel and the tributary join. There is a clear relation between this shear 

layer on the one hand, and the sediment transport and morphology on the other. The 

preferential corridors of sediment transport about coincide with the shear layer (Figure 5-6 

and Figure 5-9) and the outer limit of the shear layer coincides closely with the toe of the 

avalanche faces (Figure 5-8 and Figure 5-9). 

Flow from the tributary protrudes into the confluence zone and post-confluence channel 

and thereby changes its direction in a zone of about 1 m long. Ultimately, it occupies about 

half of the width of the post-confluence channel. Flow from the tributary mainly remains near 

the water surface, which is due to the bed discordance of about 0.09 m (Figure 5-5b). At the 

upstream corner of the confluence (X = 0.53 m), the transverse inflow from the tributary is so 

strong that it blocks the flow coming from the main channel. This leads to the formation of a 

stagnation zone characterized by a rise of the water surface, and of a deviation of the near-
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surface flow towards the outer bank. Interestingly, part of the flow progresses into the post-

confluence channel near the inner bank by plunging below the near-surface flow originating 

from the tributary (Figure 5-9b). 

 

Figure 5-9 : Flow visualization of the main and post-confluence channels with dye colour injected at 

the tributary (a), and at the main channel (b). The vertical lines correspond to the location of the 

cross-sections where flow velocities have been measured. The location of the shear layer varies 

between the two dashed lines in the shadow zone. 

We postulate that this two-layer flow near the inner bank is characteristic of confluences with 

marked bed discordance and a relatively low discharge ratio (~0.1) and momentum flux ratio 

(~0.2). This two-layer flow leaves a strong footprint on the 3D flow field in the confluence 

zone. The relatively strong flow near the bed originating from the main channel prevents the 

formation of a flow recirculation zone over the shallow sediment deposition zone near the 

inner bank. The absence of the flow recirculation zone is in contradiction with the conceptual 

model of bed concordant confluences (Best, 1987), Figure 5-1. However, the present results 

are in accordance with the description of Biron et al. (1996b) concerning bed discordant 
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confluences, where flow upwelling from the main channel to the post-confluence channel in 

the outer bank is described.  

Differences in magnitude and direction between the upper and lower layers of the flow 

lead to a skewing of the velocity profiles. This is clearly seen in Figure 5-10, which shows a 

zoom of the bed topography in the confluence zone as well as the near-bed and the near-

surface average flow velocities at Z/h = 0.2 (dashed vectors) and Z/h = 0.7 (full vectors), 

respectively. At the tributary mouth, the near-bed flow from the main channel follows a rather 

straight path and it is directed upslope the bar (most left near-bed vector in X = 0.60 and 

X = 0.83; Figure 5-11). The presence of the tributary flow in this zone can be easily 

recognized by the near surface velocities that are outwards directed and, which deviate the 

flow originating from the main channel to the outer bank (full ellipse). Outside of the zone 

occupied by the bar (dashed ellipse), the near-bed flow is about parallel to the deposition bar 

contours while the near-surface flow is slightly less outwards skewed. These observations are 

in accordance with the measurements in a natural bed discordant confluence with a similar 

momentum flux ratio but a higher discharge ratio (Qt/Qm= 0.68) presented by De Serres et al. 

(1999). The vertical skewing of the velocity profile does not lead to the formation of helical 

flow cells, however, since no upward/downward vertical velocities occur that are of similar 

magnitude to the variation of the transverse velocity component over the flow depth (Figure 

5-11). 

 

Figure 5-10: Zoom of the final bed topography in the confluence zone with the vectors (ux,uy) near the 

bed at Z/h= 0.2 (dashed vectors) and near the surface at Z/h= 0.70 (full vectors). 

Figure 5-11 shows the vectors of the cross-sectional velocities (uy,uz) superimposed on the 

contours of the streamwise velocity ux. The flow upstream of the confluence (X = 0.13 m and 
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X = 0.35 m) shows a pattern that is typical for open-channel flow in a relatively narrow 

rectangular cross-section (B/H = 5) with a rough bed (Tominaga et al., 1989; Nezu and 

Nakagawa, 1993; Rodriguez and Garcia, 2008; Blanckaert et al., 2010). The flow distribution 

is about symmetrical over the width of the channel, but shows significant transverse variations 

with amplitude of about 10-15% in the streamwise velocities. Moreover, the maximum 

streamwise velocities are found below the water surface, a phenomenon commonly called the 

velocity dip. This velocity distribution is the result of advective transport of momentum by 

helical flow cells. These cells are induced by turbulence, reach maximum cross-stream 

velocities of about 0.02U and scale with the flow depth, which explains the existence of four 

cells over the width of the channel (Blanckaert et al., 2010). These four cells are 

schematically indicated in Figure 5-11a. Regions of downward vertical velocities (Y = 0.1 m 

and Y = 0.4 m; Figure 11a) advect high near-surface velocities towards the bed and cause an 

increase in streamwise velocity in the water column, whereas regions of upward vertical 

velocities (Y = 0.25 m; Figure 11a) advect low near-bed velocities towards the water surface 

and cause a decrease in streamwise velocity in the water column.  

The cross-section at X = 0.35 m (Figure 5-11b) is characterized by a slight rise of the 

water surface near the inner bank, an outwards mass flux in the inner part of the cross-section, 

and a weak outwards shift of the streamwise velocity pattern. This slight asymmetry can be 

attributed to the effect of the entrance of the tributary flow which perturbs the flow upstream 

of the confluence where flow is subcritical. 

According to the flow visualization in Figure 5-9a, flow in the cross-section located at 

the upstream corner of the confluence (X = 0.53 m, Figure 5-11c) uniquely originates from the 

main channel and is not yet affected by momentum input from the tributary. But it is strongly 

conditioned by the confluence and shows considerably outwards velocities that are 

accompanied by a global decrease/increase of velocities in the inner/outer part of the cross-

section. Different processes contribute to this velocity redistribution. The most important is 

probably topographic steering due to the presence of the bar just downstream that directs the 

flow outwards. As shown by the flow visualization, the flow coming perpendicularly from the 

tributary acts as an obstacle that causes a stagnation zone characterized by a rise in the water 

level near the inner bank, and a flow deceleration and flow deflection in the outwards 

direction. The effect of the obstruction by the tributary inflow is especially strong near the 

water surface, as visible in the bulging of the ux-contours. These processes originate at the 

confluence and weaken with distance from the inner bank. The vertical ux-contours near the 
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water surface at the inner bank and the quite important velocity gradient suggest the 

development of a shear layer. 

The pronounced transverse velocities near the inner bank in the cross-sections situated 

in the confluence zone (X = 0.60 m at the axis of the tributary and X = 0.68 m at the 

downstream corner of the confluence) represent the transverse inflow from the tributary. They 

follow the bed topography and weaken with distance from the inner bank, which is due to the 

change in the direction of flow (see visualization in Figure 5-9a). These transverse velocities 

are higher at X = 0.68 m than at X = 0.60 m, indicating that the flow in the tributary is 

asymmetrical with higher velocities towards the downstream confluence corner. This can be 

explained by the presence of the stagnation zone at the upstream confluence corner (Figure 

5-9). These results are in agreement which measurements presented by Weber et al. (2001b). 

The momentum input by the tributary increases the magnitude of the velocity vector near the 

inner bank (Figure 5-10) and causes the core of highest velocity magnitudes to occur near the 

inner bank close to the bed. This core of highest velocities is of particular importance for the 

transport of sediment originating from the tributary (see further in section 5.5). The outward 

velocities cause an outward shift of the location of the shear layer (at about Y = 0.37 m/0.32 m 

in the cross-sections at X = 0.60 m/0.68 m). Velocities near the inner bank are low at the 

water surface and increase considerably towards the bed, which complies with the 

aforementioned vertical two-layer structure of the flow in the confluence zone. Other flow 

processes are similar to those in the cross-section at X = 0.53 m. 

The confluence-induced flow processes persist in the cross-section downstream of the 

confluence at X = 0.83 m. The transverse velocities near the inner bank have weakened, but 

the two-layer flow structure and the core of highest velocities close to the bed near the inner 

bank are still pronounced. This cross-section is characterized by considerable acceleration of 

the flow, especially on the slope of the sediment deposition zone near the inner bank. This 

flow acceleration, which plays an important role in the transport of sediment (see further in 

section 5.5), can be attributed to two effects. First, the sediment deposition zone near the inner 

bank reaches its maximum height, which leads to a considerable reduction of the flow cross-

section in the post-confluent channel. Second, the near-surface flow originating from the 

tributary occupies about half of the width (see dye visualization in Figure 5-9a) which leads to 

a contraction and a further reduction of the flow area. The shear layer, located around 

Y = 0.25 m according to the dye visualization in Figure 5-9, has considerably weakened as 

indicated by the attenuated gradient in the near-surface velocities. 
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Velocities are rather low in the shallowest part (Y> 0.4 m) of the cross-section at 

X = 1.33 m. Outwards mass and momentum transport between the cross-sections at 

X = 0.83 m and X = 1.33 m has shifted the core of maximum velocities to the central zone of 

the channel. Interestingly, it occurs over the sediment deposition zone and not over the 

deepest part of the cross-section. Inwards mass transport is observed in the inner part of the 

cross-section, which is due to the decreasing transverse bed slope (Figure 5-5a). This cross-

section is marked by considerable global flow acceleration accompanied by an increase of the 

post-confluence water surface slope (Figure 5-5b). 

It is interesting to note that the signature of the helical flow cells observed in the cross-

sections at X = 0.13 m and X = 0.35 m remain visible onto the last measured cross-section at 

X = 1.33 m, in the form of the bulging of the ux-isolines and the two cores with increased 

streamwise velocities. These features are shifted outwards, however, by the flow originating 

from the tributary, and they only occur in the confluence zone at the outside of the shear layer. 

Moreover, the transverse velocities of these turbulence induced helical flow cell of about 

0.02U≈ 0.01 ms-1 are more than an order-of-magnitude smaller than the transverse velocities 

inflowing from the tributary. These observations indicate that these helical cells do not 

modify considerably the 3D flow processes induced by the channel confluence. 
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Figure 5-11 : Mean streamwise flow velocities ux (contours) and cross-sectional velocities, uy,uy 

(vectors) at the seven measured cross-sections indicated in Figure 5-3. The two vertical dashed lines 

represent the boundaries between measurements performed with the asymmetrical and symmetrical 

ADVP configurations, whereas the shaded areas indicate regions where the flow measurements are 

perturbed by the ADVP housing that touches the water surface (more details in Blanckaert, 2010). 
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Figure 5-11: (continued). 

5.4.3 Turbulent flow structure 

The confluence enhances turbulence activity, which is relevant with respect to the mixing of 

the mass, the momentum, the heat, the suspended matter and the sediment coming from the 

main channel and the tributary. Figure 5-12 shows the normalized turbulent kinetic energy, 

2utke ∗ , in the cross-sections at X = 0.13 m, X = 0.68 m and X = 0.83 m. These cross-sections 

were chosen because of their representativeness in terms of turbulent structure in a confluence 

zone. The characteristic shear velocity u* used for the normalization is calculated between 

X = 0.13 m to X = 1.33 m and is equal to 0.04 ms-1. As mentioned in section 5.2, only 

turbulence measurements with the symmetrical ADVP configuration are discussed. 
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The pattern of tke in the cross-section at X = 0.13 m is typical of straight channel flows 

in narrow rectangular cross-sections. The turbulence is mainly induced by bottom friction and 

redistributed in the cross-section by the turbulence-induced helical flow cells (Figure 5-12a) 

that cause transverse variations in the tke (Blanckaert et al., 2010). These patterns subsist in 

the central parts of the cross-sections at X = 0.68 m and X = 0.83 m, but they are slightly 

advected outwards by the transverse velocities associated with the tributary inflow (Figure 

5-12). The most noticeable features in the cross-sections at X = 0.68 m and X = 0.83 m are the 

increased and pronounced gradients in tke near the inner edge of the measuring grid. These 

gradients correspond to the position of the shear layer as identified by means of dye flow 

visualisation (Figure 5-9) and in the mean velocity patterns (Figure 5-11). Also the 

momentum input by the tributary flow contributes considerably to the tke increase: it 

increases the magnitude of the velocities in the confluence zone (Figure 5-11) and hence also 

the turbulence activity, since tke scales with the square of the mean velocity magnitude. In the 

cross-section at X = 0.68 m, the pronounced tke gradient is only apparent near the water 

surface, which is in agreement with the pronounced vertical two-layer flow structure in this 

zone (Figure 5-11). Interestingly, the core of pronounced tke increase in the shear layer about 

coincides with the preferential corridors of sediment transport (Figure 5-6b).  
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Figure 5-12 : Patterns of normalized turbulent kinetic energy 2utke ∗  in the cross sections at 

X = 0.13 m (a), X = 0.68 m (b), X = 0.83 m (c). The shaded areas indicate regions where the flow 

measurements are perturbed by the ADVP housing that touches the water surface (more details in 

Blanckaert, 2010). 
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Figure 5-13 presents the relative contributions to the tke of the streamwise, transverse and 

vertical velocity fluctuations at a relative depth of Z/h = 0.7 in the cross-sections at 

X = 0.13 m, X = 0.68 m and X = 0.83 m. Upstream of the confluence in the cross-section at 

X = 0.13 m, the contribution of 2´ux , 2´uy  and 2´uz are about 58%, 30% and 12%, 

respectively, which is in agreement with Nezu and Nakagawa's (1993) semi-theoretical values 

for straight open-channel flows. In the cross-section at X = 0.68 m, the tributary input of 

transverse momentum causes an increased relative contribution of 2´uy  at the expense of 

2´ux , which weakens with transverse distance from the confluence mouth. Interestingly, 

although the mean flow reorients in the streamwise direction between the cross-sections at 

X = 0.68 m and X = 0.83 m (Figure 5-11 and Figure 5-12), 2´uy continues to grow at the 

expense of 2´ux  in the inner part of the cross-section where the transverse fluctuations form 

the dominant contribution to tke. Similar behaviour has been measured by Sukhodolov and 

Rhoads (2001) in small natural bed concordant confluences.  

 

Figure 5-13 : Relative contributions of 2'ux , 2'uy  and 2'u z  on the turbulent kinetic energy in the 

cross-sections X = 0.13 m, X = 0.68 m and X = 0.83 m near the water surface (Z/h= 0.70). 
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5.5 Hydro-morpho-sedimentary processes and interactions 

The previous sections reported and analysed separately the bed morphology and the sediment 

transport on the one hand and the flow dynamics on the other hand. Results indicated 

important differences between confluences such as found in alpine environments that are 

characterized by pronounced bed discordances and the conceptual model of Best (1988) 

presented in Figure 2, which was based on observations in confluences with concordant beds.  

In order to facilitate the discussion, Figure 5-14 attempts to integrate the foregoing 

observations in a (speculative) conceptual framework for the hydro-morpho-sedimentary 

processes that would characterize confluences with low discharge and momentum flux ratios, 

such as confluences found in the Upper Rhone River. This section describes the dominant 

processes and interactions and explains the differences with Best's (1988) model. 

 

Figure 5-14 : Conceptual framework of hydro-morpho-sedimentary processes in channel confluences 

such as found in alpine environments. 
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5.5.1 Representativeness of the experimental results 

The first important point to discuss is the representativeness of the morphodynamic processes 

observed in the laboratory set-up. Figure 5-15 illustrates the confluence of the Lonza and the 

Upper Rhone Rivers for which the main parameters are presented in Table 5-3. It is important 

to note that the aerial view and the cross-sections (Figure 5-15a) and the pictures taken at the 

confluence (Figure 5-15b and Figure 5-15c) do not represent the same time and discharges.  

Table 5-3 : Main geometric and hydraulic parameters of the confluence of the Upper Rhone and the 

Lonza Rivers in Switzerland. 

Angle [°] B t /B m B m /B p-c

Tributary 
bed slope 

[%]
Q2 t /Q2 m Fr tQ2 M r _Q2

Lonza 65 0.11 1.06 1.1% 0.1 ~1 0.1  

Although the main geometrical and hydraulic parameters are not exactly the same, the main 

morphological features described in the experiment can be observed in the field. The Lonza-

Rhone confluence is marked by a significant discordance at the mouth of the tributary, which 

is responsible for the disconnection between the waters during low flow periods. The 

confluence provokes the formation of an important deposition zone that occupies around 75% 

of the channel width in the cross-section at Km 99.384 (Figure 5-15a). The deposition zone 

deviates the main flow towards the left bank; generating flow acceleration and consequently 

creating a small erosion zone near the left bank (Figure 5-15b). As for the present experiment, 

the erosion is considerable smaller than the deposition. The sediment bar is characterized by 

significant grain sorting, where fine and coarse materials regions can be recognized in Figure 

5-15c. During low flows, the bar is exposed and the flow is redistributed to the left bank. A 

well marked shear layer is formed between the confluent flows (Figure 5-15c).  
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Figure 5-15: Confluence of the Lonza and Upper Rhone Rivers in Switzerland during low flow 

conditions. a) Aerial view (source: www.maps.google.com) showing 4 cross-sections. b) Picture taken 

from the mouth of the tributary towards downstream and c) picture taken from the right bank at the 

deposition zone from upstream. The confluence is characterized by a junction angle of 65° and the 

parameters Bt/Bm = 0.11, Qt/Qm = 0.1, Frt ~ 1.0 and Mr = 0.1. 

5.5.2 Deposition dominated vs. scour dominated confluence zones 

For the present experiment, no scour occurs in the confluence zone and only a very slight 

scour develops near the outer bank in the post-confluence channel (Figure 5). These 

observations do not agree with the results described by Mosley (1976), Best (1988) or 

Ashmore and Parker (1983), where well-defined scour zones were found. The equilibrium 

bathymetry is more in line with the model of discordant sand-bed confluences proposed by 

Leclair and Roy (1997), which describes the formation of the tributary mouth bar in response 

to changes in the momentum flux ratio. However, their model cannot be directly applied to 

the present experiment since it concerns momentum flux ratios Mr≥ 1 that are much higher 
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than those of the present case (Mr= 0.21). Moreover, although the dominant sediment input in 

the model proposed by Leclair and Roy (1997) comes from the tributary, there was hardly any 

bedload transport in their measurements in contrast to the significant bedload transport in the 

here-reported experiments.  

The bed topography and the dominance of deposition or scour are determined by the 

requirements of sediment continuity in the equilibrium configuration. The bed topography 

depends essentially on the flow discharges, the sediment particle characteristics and sediment 

supplies in the main channel and the tributary. In cases where there is no bedload supply or 

the dominant sediment supply originates from the main channel (Mosley, 1976; Ashmore, 

1982; Ashmore and Parker, 1983; Rhoads and Kenworthy, 1995; Rhoads and Kenworthy, 

1998; Rhoads and Sukhodolov, 2001), the tributary flow locally enhances the sediment 

transport capacity, which leads to the development of scour until the sediment transport and 

the sediment supply are re-equilibrated. In these confluences, there is hardly any formation of 

bed discordance and the model proposed by (Best, 1988) is applicable (Figure 5-2).  

In cases where the dominant sediment supply originates from the tributary, such as in 

the Upper Rhone River or also in the Bayonne-Berthier confluence (investigated by Biron et 

al., 1993; Biron et al., 1996a; Biron et al., 1996b; Leclair and Roy, 1997; Biron et al., 2002; 

Boyer et al., 2006), there is formation of significant deposition bar at the inner bank reducing 

the flow area and inducing flow acceleration. This adjustment provides the increase in 

sediment transport capacity required to transfer the additional sediment supply from the 

tributary. This increase in flow velocity is accompanied by an increase in the energy gradient 

(which scales with the square of the velocity) as illustrated by the marked increase in the 

water surface slope in the reported experiment (Figure 5-5c).  

In natural cases with intermittent sediment supply from the tributaries only during 

floods, the sediment deposition bar can be expected to grow during the flood event when the 

sediment supply exceeds the sediment transport capacity. After the flood when the sediment 

supply has vanished, however, the bar can be expected to attenuate through the evacuation of 

sediment until equilibrium is established. Averaged in time over multiple flood events, 

however, the sediment transport capacity downstream of the confluence needs to be higher 

than in the main channel upstream of the confluence. This is in agreement with experimental 

evidence of flow acceleration downstream of confluences in natural rivers as well as in the 

reported experiment (Roy and Roy, 1988; Roy et al., 1988). 
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5.5.3 Bed discordance vs. bed concordance at the confluence mouth 

The most typical feature of the bed morphology in alpine confluences is the marked 

discordance in the bed elevations at the mouth of the main and tributary channels (Figure 

5-5b). These confluences are typically characterized by a subcritical flow (Frp-c <1) in the 

post-confluence channel and transcritical flow (Frt~1) in the tributary, and a low discharge 

ratio Qt/Qm. These different flow regimes play a crucial role in the formation of the bed 

discordance. 

Flow in the post-confluence channel is subcritical, and hence by definition conditioned 

by the downstream boundary conditions for the water surface elevation and the bed level. The 

total discharge, Qm+Qt, and sediment supply, Qs,m + Qs,t, originating from the main channel 

and the tributary determine the (cross-sectional-averaged) flow depth and the bed slope in the 

post-confluence channel, and hence also the absolute elevations of the bed and the water 

surface at the confluence mouth, Zb,m and Zw,m, respectively (Figure 5-16). These 

considerations did not take into account the three-dimensionality of the bed topography in the 

post-confluence channel. This three-dimensionality, however, mainly occurs downstream of 

the confluence due to the sediment supply by the tributary, and it is much less pronounced in 

the confluence zone where the bed discordance is observed (Figure 5-5a). 

At the confluence mouth, the water levels in the main channel, the tributary and the 

post-confluence channel are about equal. For the reported experiment, a hydraulic jump has to 

occur to accommodate the transition from the supercritical flow in the tributary to the 

subcritical flow in the post-confluence channel. The characteristics of a hydraulic jump are 

mainly determined by Frm and Frt. The values in the experiment of Frm = 0.9 and Frt = 1.3, 

lead to the formation of a weak undulated hydraulic jump that only induces a very small 

difference in water level elevations at the confluence mouth, Zw,m≈ Zw,t. This behaviour is 

similar to what is observed at confluences of the Upper Rhone River, where the transition 

from the transcritical flow (Fr~1) in the tributary to the subcritical main channel flow does 

not require a hydraulic jump. 

The discharge Qt, the sediment supply Qs,t and the sediment characteristics in the 

tributary determine the flow depth, Ht, and the bed slope St. The absolute elevations of bed 

and the water surface are determined by the downstream boundary conditions at the 

confluence mouth. The absolute elevation of the bed level is determined by Zb,t = Zs,t-Ht. The 

bed discordance is readily obtained as Zb,t - Zb,m≈ Hm-Ht. The bed discordance is pronounced 

in alpine confluences due to the different flow regimes in the tributary and main channels.  
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Figure 5-16 : Conceptual model for bed discordance. 

5.5.4 Two-layer flow structure vs. flow recirculation zone  

In the case of concordant beds as described in Best (1988) conceptual model, the tributary 

flow obstructs the main-channel flow over the entire flow depth and deviates it in outwards 

direction. The directional change of the tributary creates a zone of horizontal flow 

recirculation at the inner bank (Best and Reid, 1984) where mainly fine sediment tends to 

settle and to build a separation zone bar (Figure 5-2). As mentioned in section 5.3, a 

morphological depression that coincides with a corridor of deposition and transport of fine 

sediment was observed in the flume at the inner bank. However, this corridor of fine-sediment 

transport is much narrower than the bank-attached lateral bars associated with a region of 

flow recirculation in Best's (1987) conceptual model. 

Processes in alpine confluences are fundamentally modified by the presence of 

pronounced bed discordance, which is at the origin of the formation of a two-layer flow 

structure. Flow originating from the tributary mainly protrudes in the upper part of the water 

column of the main channel, where it forms an obstruction for flow originating from the main 

channel and deviates the latter outwards. The bed discordance protects the flow in the lower 

part of the water column from the obstruction by the tributary inflow, and allows it to go 

straight on (Figure 5-9, Figure 5-10, Figure 5-11 and Figure 5-14), which prevents the 

formation of a zone of horizontal flow recirculation. The near-bed flow originating from the 

main channel plays an important role in the morphological development, since it encounters at 

the confluence mouth coarse sediment supplied by the tributary. Initially, the near-bed flow 

has insufficient sediment transport capacity, leading to the deposition of the sediment and the 

development of the deposition bar. This causes, however, a reduction in the local flow depth, 

an acceleration of the near-bed flow, and its outwards deviation by topographic steering. At 

equilibrium, the near-bed flow is mainly found on the sloping face of the sediment deposition 

bar. It accelerates by moving upslope on the face of the sediment deposition bar. As described 

in section 5.3, its upslope component equilibrates the downslope gravitational pull on the 
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sediment particles and thereby conditions the slope of the face of the sediment deposition bar 

and the sediment sorting on the bar’s face. 

5.6 Conclusions 

Alpine confluences are characterized by steep tributaries with high supply of poorly sorted 

sediment, relatively low discharge and momentum flux ratios, and a pronounced bed 

discordance at the tributary mouth. These characteristics condition the hydro-morpho-

sedimentary processes, which differ fundamentally from existing conceptual models (Mosley, 

1976; Ashmore and Parker, 1983; Best, 1988). The paper reports results from measurements 

of the three-dimensional velocity field, turbulence, sediment transport, sediment granulometry 

and morphology in a laboratory confluence that is representative of the Upper-Rhone River, 

Switzerland, under channel-forming conditions.  

The marked bed discordance at the confluence mouth is mainly determined by the 

different flow regimes in the main channel and the tributary. The flow depth in the subcritical 

main channel is considerably higher than in the transcritical steep tributary. This difference in 

flow depth is materialized in a pronounced bed discordance, whereas the water surface 

elevation only shows weak variations in the confluence zone. Due to this bed discordance, the 

tributary flow penetrates into the main channel mainly in the upper part of the water column, 

whereas the main-channel flow is hardly hindered by the tributary in the lower part of the 

water column.  

The sediment transfer between the tributary and the post-confluence channels mainly 

occurs near the downstream corner of the confluence due to the formation of a stagnation 

zone at the upstream confluence corner that causes an asymmetric distribution of the flow and 

sediment transport. Sediment provided by the tributary to the post-confluence channel is 

mainly transported by the near-bed flow on the face of the sediment bar, which originates 

from the main channel. Three hydro-morphological interactions provide the sediment 

transport capacity required. First, the development of the sediment bar causes a reduction in 

the local flow depth, an acceleration of the near-bed flow, and its outwards deviation by 

topographic steering. Second, the bed discordance gives rise to a two-layer flow structure and 

to highly three-dimensional flow patterns that are characterized by near-bed cores of high 

velocity with increased sediment transport capacity. The near-bed flow prevents the formation 

of a zone of flow recirculation and deposition of fine sediment at the inner-bank. Third, 
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considerable turbulence is generated in the shear layer at the junction of the flows originating 

from the main channel and the tributary. The coincidence of the shear layer with the location 

of the preferential corridors of coarse sediment transport indicates that the contribution of the 

increased turbulence levels to the required increase in sediment transport capacity is relevant. 
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6. Hydro-morphological implications of local tributary 

widening for river rehabilitation 
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6.1 Introduction 

During the past centuries, many rivers have been channelized and regulated, often with the 

aim of reclaiming land for urbanization and agriculture. These river training works typically 

resulted in linear river systems with quasi homogeneous flow and morphologic conditions, 

which are characterized by considerably reduced natural dynamics, impoverished ecological 

value and deficiency in flood safety. The Upper Rhone River in Switzerland (Figure 6-1) is an 

example of such a regulated river.  

River confluences are the nodes of the fluvial network. They are typically characterized 

by high variability in flow, sediment load, sediment size and water quality (Rice and Church, 

2001), which is a requisite for a sound fluvial ecosystem. Tributary regulations can be largely 

responsible for ecological changes (Rice et al., 2001; Rice et al., 2006) and can have dramatic 

impacts on the flood safety (Sloan et al., 2001; Roca et al., 2009). 

 

Figure 6-1: Upper Rhone River basin showing the twenty main confluences between Brig (upstream, 

at the right in the figure) and the lake of Geneva (downstream, at the left in the figure). 
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This paper investigates the hydro-morphological implications of a local tributary widening in 

river systems such as the Upper Rhone. Two main river training works have been performed 

on this river since 1850 and presently, less than 1% of the basin can be considered truly 

natural (Bourgeois, 2006). The main channel is embanked at a width varying between 30 and 

60 m, and also the tributaries are channelized. The confluences are characterized by 

pronounced bed discordances, which have often been stabilized by means of weirs or block 

ramps. At present, a major river rehabilitation project is in progress (SRCE, 2008) in the 

Upper Rhone basin, which aims at conciliating improved flood protection and enhanced 

ecological value. The rehabilitation of confluence zones, which is critical component of the 

overall rehabilitation project, is hindered by a lack of understanding of the relevant hydro-

morpho-sedimentary processes.  

River widening, which allows the river to adjust to its natural dynamics, has become a 

common concept in river rehabilitation (Rohde et al., 2005; Nakamura et al., 2006; Formann 

et al., 2007; Weber et al., 2009). Surprisingly, the local widening of the tributary at 

confluences (Figure 6-2) has not yet been investigated. Such a local tributary widening aims 

to increase the heterogeneity in sediment substrate, flow depth and flow velocity, which is 

favourable for in-stream habitat (e.g. aquatic invertebrates, fish, and vegetation) and for the 

connectivity between the main river and the tributary. Especially zones of quiescent water 

(flow stagnation or flow recirculation zones) may play an important role as refuges during 

flood events or during the hydropeaking (Meile et al., 2010). Moreover, a local tributary 

widening aims to create a riparian zone which favours the diversity of plants and animals (e.g. 

birds, mammals, insects, amphibians). A local tributary widening may constitute a local 

hotspot for biodiversity along confined, channelized and regulated river systems. Obviously, 

river rehabilitation by means of local tributary widening is only feasible if it has negligible 

adverse effects on the flood safety. 
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Figure 6-2: Confluence of the channelized Upper Rhone and Vièze Rivers. Local widening is 

schematic illustrated and its main objectives are listed. 

Although the flow characteristics of river confluences are well documented in the literature 

(Best and Reid, 1984; Best, 1987; Best and Roy, 1991; Lane et al., 1994; Biron et al., 1996b; 

McLelland et al., 1996; Bradbrook et al., 1998; Lane et al., 1998; Lane et al., 1999a; 

Bradbrook et al., 2000a; Lane et al., 2000; Biron et al., 2004), the presence of sediment 

transport and its influence on the morphodynamic are still poorly understood. The few 

existing laboratory studies on confluence morphology (Mosley, 1976; Ashmore and Parker, 

1983; Best, 1988) and the field investigation on flow and morphological features of bed 

concordant (Roy and Bergeron, 1990; Rhoads and Kenworthy, 1995; Rhoads and 

Sukhodolov, 2008, Rhoads et al., 2009) and bed discordant (Biron et al., 1993; Leclair and 

Roy, 1997; Boyer et al., 2006) confluences show that the hydrodynamics of confluence zones 

are highly responsive to the changes in the morphology.  

Chapter 5 has shown that the current knowledge provided by these previous 

contributions is not directly applicable to alpine river confluences. Alpine confluences are 

characterized by relatively low ratios of tributary discharge to main channel discharge, Qt/Qm, 

dominant sediment supply from the tributary, steep bed slopes in the tributary, and a 

pronounced difference in bed elevation between the main channel and the tributary, which is 

called bed discordance. Based on detailed measurements of the morphology, the sediment 
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size, and the three-dimensional flow field in a laboratory flume, Chapter 5 has proposed an 

enhanced conceptual model (Figure 6-3) for the hydro-morpho-sedimentary processes in 

channelized alpine confluences. The model has been validated by observations of the 

confluences of the Upper Rhone.  

The pronounced bed discordance (M1) at the confluence mouth is due to the important 

difference between the flow depths in the steep tributary and in the main channel. The 

formation of a stagnation zone (F4) at the upstream confluence corner causes an asymmetric 

distribution of the flow and sediment transport, whereby the sediment transfer between the 

tributary and the main channel mainly occurs near the downstream corner of the confluence. 

The presence of a large sediment bar at the inner bank (M2) and the absence of a marked 

scour hole at the outer bank (M5) are typical for confluences characterized by a dominant 

sediment supply originating from the tributary and low discharge and momentum flux ratios. 

The sediment bar lead to a reduction in cross-sectional area and a corresponding acceleration 

of the flow that provides the increase in sediment transport capacity required to transfer the 

additional sediment supply from the tributary. The pronounced bed discordance leads to the 

formation of a two-layer flow structure in the confluence zone (F1, F2, F3). Flow originating 

from the tributary mainly protrudes in the upper part of the water column of the main channel, 

where it forms an obstruction for flow originating from the main channel and deviates the 

latter outwards. The bed discordance protects the flow in the lower part of the water column 

from the obstruction by the tributary inflow, and allows it to go straight on. The two-layer 

flow structure does not lead to the formation of secondary flow circulation cells. The near-bed 

flow originating from the main channel encounters at the confluence mouth coarse sediment 

supplied by the tributary. This near near-bed flow is mainly found on the sloping avalanche 

faces of the sediment deposition bar (M3). It accelerates by moving upslope on the face of the 

sediment bar. Its upslope component equilibrates the downslope gravitational pull on the 

sediment particles and thereby conditions the slope of the avalanche faces and the sediment 

sorting occurring on them. A shear layer (F5) develops where flows originating from the 

tributary and from the main channel collide. It is characterized by increased turbulence and its 

outer limit coincides closely with the toe of the sediment bar (M2). In the downstream 

confluence corner, spiral vortices (F6) lift fine material into suspension. Fine materials are 

then transported near the inner bank (M4) while the coarse ones are transported on the face of 

the sediment bar (M3). 
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Figure 6-3: Conceptual model for hydro-morpho-sedimentary processes in confluences such as found 

in alpine environments (Chapter 5). 

By means of laboratory experiments, this paper compare a reference configuration that 

represents a channelized confluence (reported in detail in Chapter 5) to a configuration with a 

local tributary widening, with the aim of: 

• Investigating the influence of a local tributary widening on the hydro-morpho-

sedimentary processes in the confluence zone; 

• Assessing the potential of local tributary widening in the framework of river 

rehabilitation, and in particular to assess its effect on the flood safety. 
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6.2 The experiments 

A laboratory investigation was performed under geometric and hydraulic conditions that are 

representative of the confluences of the Upper Rhone River (Table 6-1). The confluence 

flume with smooth vertical banks was composed of a 8.5 m long and 0.50 m wide main 

channel and a 4.9 m long and 0.15 m wide tributary, connected an angle of 90°at a distance of 

3.60 m downstream of the inlet of the main channel (Figure 6-4). The ratios of the tributary 

width to the main channel width of Bt/Bm = 0.3 and of the main channel width to the post-

confluence channel width of Bm/Bp-c = 1 are typical of river channel confluences in the Upper 

Rhone River (Table 6-1). The choice of 90° confluence angle is based on the fact that the 

lateral valleys of the basin are almost perpendicular. The present state of the Rhone 

confluences zones is the result of the river training works. Consequently the current angles are 

not truly natural. Moreover, with the local widening, a self-natural dynamic is expected in the 

confluence zone, which includes the adjustment of a natural angle.  

Table 6-1: Geometric and hydraulic characteristics of the main confluences on the Upper Rhone River 

Angle [°] B t /B m B m /B p-c
Tributary bed 

slope [%]
Q2 t /Q2 m Q5 t /Q5 m Fr tQ2 Fr tQ5 M r _Q2 M r _Q5

Average 62 0.22 1.02 1.1% 0.10 0.09 0.83 0.83 0.12 0.08
Max 90 0.54 1.27 4.0% 0.32 0.31 1.29 1.30 0.45 0.30
Min 30 0.07 0.71 0.0% 0.01 0.01 0.03 0.03 0.00 0.00  

The width of the tributary was symmetrically doubled (Bw=0.30 m) in the confluence zone, 

over a distance from the tributary channel mouth that is three times the reference tributary 

channel width (Lw= 3Bt = 0.45 m). Figure 6-4 shows the experimental set-up including the 

geometry of the locally widened tributary channel and the reference configuration (Chapter 

5). The present paper adopts an orthogonal (X, Y, Z) reference system, where the X-axis is 

along the main channel in streamwise direction, the Y-axis points towards the left and has its 

origin at the right bank of the main channel (outer bank), and the Z-axis is vertically upwards. 

The flow discharges of the main and tributary channels were Qm = 18 ls-1 and Qt = 2 ls-1, 

respectively, leading to a discharge ratio Qt/Qm = 0.11 that is typical for the Rhone basin 

under morphogenic conditions corresponding to floods with return periods of about 2-5 years 

(Chapter 5). Constant flow discharges were supplied by two independent pumps, connected 

upstream of the main channel and the tributary. An adjustable tailgate at the end of the main 

channel fixed the downstream flow depth at 0.07 m. Initial flow depths in the main channel 

and in the tributary were 0.09 m and 0.06 m, respectively. 
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Figure 6-4: Experimental set-up, (X,Y,Z) reference system and grain size distribution of the sediment. 

The cross sections where velocity measurements were performed are indicated by the dashed lines and 

the locations of the bed samples by the dark circles. The limit between the main channel and the post-

confluence channel is the tributary axis at X = 0.60 m. 

The movable bed was initially flat in the main channel and consisted of a sediment mixture 

characterized by d50 = 0.82 mm; dm = 2.3 mm and d90 = 5.7 mm with a gradation coefficient 

 σ = 4.15, where )/dd  /d(d*0.5 16505084 +=σ . A constant sediment discharge of 

0.30 kg/min from the same sediment mixture was supplied by a conveyor belt at the tributary 

inlet only. The sediment characteristics and the sediment discharge adopted for the 

experiments satisfy two requirements:  

• The gradation of the sediment mixture is representative of the Upper Rhone River, as 

indicated by the dimensionless grain size distribution in Figure 3-17.  

• The sediment discharge yields a longitudinal slope in the tributary that are in the range 

of those of the Upper Rhone tributaries (Table 6-1). 

A sediment trap at the downstream end of the main channel recovered the sediment 

transported. Equilibrium conditions, defined by a steady level of the bed topography, were 

reached after 22 h. 
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Figure 6-5: Distributions of the grain size normalized with the average grain diameter of the bed 

surface for the sediment mixture used in the laboratory experiments and for different locations on the 

Upper Rhone River (upstream distances with respect to the Lake Geneva, see Figure 6-1). 

Water surface elevations were measured with echosounders during 10 s with a frequency of 

128 Hz, providing an average value with an accuracy of ±1 mm. The bed topography was 

measured with a Mini EchoSounder with an accuracy of ±1 mm. Both instruments were 

installed on a movable frame that covers part of the experimental set-up (3.80 m in the main 

and post-confluence channels and 3.00 m in the tributary, see Figure 6-4). Table 6-2 

summarizes information on the measuring grids. The bed topography maps reported hereafter 

are obtained by linear interpolation between the measured points.  

Table 6-2: Measuring grids for the water surface elevation and the bed topography. 

Location Water level Bed topography

Main channel and post-
confluence channel

Three transverse points (Y =0.05, 
Y= 0.25 and Y =0.45 m) in nine cross-
sections (X =0.03, X =0.44, X =0.50, 
X =0.60, X =0.72, X =0.74, X =1.18, 

X =2.18 and X =3.18m).

Thirteen longitudinal profiles (measuring 
grid of ∆X  =0.009m in the domain X= 0 to 
3.80 m) spaced by ∆Y=0.04m from Y=0.04 

to Y=0.46 and additional profile at 
Y =0.48m.

Tributary upstream of the local 
widening

Eight points on the tributary axis 
spaced by ∆Y=0.20m between 

Y=1.04 and Y=3.44m.

Points on the tributary axis with a spaced 
by ∆Y=0.20 m between Y =1.13 and 

Y =1.33m.

Local tributary widening

Three transverse points (X  =0.50, 
X =0.60 and X =0.72m) in five cross-
sections (Y= 0.54, Y=0.64, Y=0.74, 

Y=0.84 and Y=0.90m).

Nine cross-sections (measuring grid of 
∆X =0.009m in the domain X  =0.475 to 
X =0.725 m) spaced by ∆Y=0.05m from 

Y=0.54 to Y=0.84 and additional profile at 
Y =0.90m.  

Once the equilibrium bed morphology was established, non-intrusive measurements of 

velocity profiles were made with an Acoustic Doppler Velocity Profiler (ADVP) developed at 

École Polytechnique Fédérale Lausanne (Switzerland). The working principle of the ADVP 
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has been described by Lemmin and Rolland (1997), Hurther and Lemmin (1998), Blanckaert 

and Graf (2001) and Blanckaert and Lemmin (2006). Blanckaert (2010) describes in detail the 

data treatment procedures and quantified the uncertainty in the measurement as follows: about 

4% in the time-averaged longitudinal velocity ux, about 10 % in the cross-stream velocities 

(uy,uz), about 20% in the turbulent kinetic energy (tke). More details about the application of 

the ADVP in the confluence flume are reported in Chapter 5. 

Flow velocities were measured in five cross-sections in the main and post-confluence 

channels. The positions of the cross-sections were chosen in order to facilitate the comparison 

with the results of the velocity field in the confluence zone presented in Chapter 5, i.e, 

upstream corner of the confluence (X = 0.45 m), axis of the tributary (X = 0.60 m), 

downstream corner of the confluence (X = 0.75 m), a distance that corresponds to a tributary 

width (0.15 m) downstream of the confluence (X = 0.90 m) and 0.65 m downstream 

(X = 1.4 m). 

Samples of the surface bed material under equilibrium conditions were collected at 

different locations and grain size analysis by means of hand sieving was performed. In the 

reference configuration, samples were collected in the main channel upstream of the 

confluence (S1), the tributary (S2), the avalanche faces (S3) and the sediment bar (S4). In the 

widened configuration additional samples were collected in the centre (S5) and the 

downstream corner (S6) of the widened zone (Figure 6-4).  

6.3 Water surface elevation, bed morphology and sediment transport at 

equilibrium 

This section presents the water surface elevation, the bed morphology and the sediment 

transport at equilibrium conditions for the configuration with locally widened tributary and 

compares them to their counterparts in the reference configuration.  

The main morphological features (Figure 6-6) in the configuration with the locally 

widened tributary are the same as those described for the reference configuration in section 

6.1, i.e (i) the formation of a pronounced bed discordance between the tributary and the main 

channel; (ii) the presence of a large sediment deposition bar downstream of the confluence at 

the inner bank; (iii) slight erosion near the outer bank. The local tributary widening does, 

however, provoke systematic morphological changes, as highlighted in Figure 6-7 for the 

tributary and in Figure 6-8 for the main and post-confluence channels. 
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Figure 6-6: Equilibrium bed morphology for the main and post-confluence channels and the local 

tributary widening with indication of the 2 cross-sections in the tributary widening, 1 longitudinal 

profile along the tributary axis and  the 3 longitudinal profiles in the main and post-confluence 

channels shown in Figure 6-7 and Figure 6-8. The reference level corresponds to the level of the 

initially horizontal bed and is situated at Z = 0.02 m.  

Water surface elevations in the widening are similar to those in the reference configuration. 

However, there is a considerable overall rise in bed elevation in the local tributary widening 

compared to the reference configuration. The widened zone is constituted by a high variability 

in water depths (Figure 6-7). The flow depth in the axis is reduced to about 0.01 m, which 

corresponds to approximately half of the flow depth in the reference tributary (Figure 6-7), 

whereas the maximum flow depth in the thalweg of 0.018 m is still smaller than the reference 

flow depth in the tributary. The main-channel flow causes a deviation of the thalweg towards 

the inner bank of the widened zone (Figure 6-7 b, c). Moreover, it creates dry zones and zones 

of flow stagnation near the outer bank (Figure 6-7 b). As a surprising result, the local 

widening of the tributary leads to a reduction of about 15% in effective cross-sectional flow 

area measured at Y= 0.55 m as compared to the reference configuration. This leads to an 

increase of the tributary velocities and a corresponding increase in the transverse momentum 

flux provided to the main channel, which can be expected to enhance the hydro-morpho-

sedimentary processes in the confluence zone. This is confirmed by the increase in the bed 

discordance height and the deeper penetration of the tributary into the main channel (Figure 

6-7a, Figure 6-8a). The bed discordance is oblique with respect to the main channel and about 

perpendicular to the thalweg at the tributary mouth (Figure 6-6, Figure 6-8a). The local 

tributary widening does not affect the average flow depth of about 0.02 m and the average bed 

slopes of about 1.9% in the tributary upstream of the widening. Moreover, the local tributary 

widening does not noticeably affect the water surface and bed elevations in the tributary 

upstream of the widening (Figure 6-7). This implies that the local tributary widening does not 

have adverse effects on flood safety in the tributary. 
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Figure 6-7: Comparison in the tributary of the water surface and bed elevations in the reference 

configuration and the configuration with local tributary widening. a) Longitudinal profile along the 

axis of the tributary, b) Cross-sections situated in the middle of the local tributary widening 

(Y=0.75 m) and at the tributary mouth (Y=0.55 m). 

Figure 6-8 illustrates systematic morphological changes in the main and post-confluence 

channels induced by the local tributary widening. The increased discordance height and 

tributary penetration (Figure 6-7a) lead to a general rise in the bed level in the confluence 

zone (Figure 6-8). Downstream of the confluence zone, however, it does not lead to a change 

in the cross-sectional averaged bed levels (Figure 6-8b) but merely to morphological 

redistribution (Figure 6-8a). This could have been expected, since the flow and sediment 

discharge in the post-confluence channel are not modified by the local tributary widening. 

The morphological redistribution occurs by means of increased bed gradients. Increased 

deposition on the sediment bar leads to the occurrence of a dry zone at the inner bank just 

downstream of the confluence. This zone is about 0.65 m long (X-axis) and 0.08 m wide (Y-

axis) and is constituted by fine sand. The increased deposition at the inner bank is about 

compensated by slightly increased erosion at the outer bank. The slope of the upstream face of 

the deposition bar along the X-axis increases considerably from about 20% in the reference 

configuration to about 27% in the configuration with local tributary widening (Figure 6-8c). 

The local tributary widening does not noticeably affect the water surface elevation in the main 

and post-confluence channels (Figure 6-8b-e). This implies that the local tributary widening 

does not have adverse effects on flood safety in the main and post-confluence channels. 
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Figure 6-8. Comparison in the main and post-confluence channels of the water surface and bed 

elevations in the reference configuration and the configuration with local tributary widening. a) 

Differences in bed topography; b) Longitudinal profile of the cross-sectional averaged water-surface 

and bed elevations; c), d), e) Longitudinal profiles near the inner bank (Y = 0.45 m), on the channel 

axis (Y = 25m) and near the outer bank (Y = 0.05 m), respectively. 
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Visual observations of the local tributary widening and the confluence zone show that the 

sediment transport corridors also deviate towards the inner bank (Figure 6-9a). In addition, 

two dry zones constituted of fine sediments are formed at the entrance of the local tributary 

widening. The presence of a third dry zone at the inner bank in the post-confluence channel 

shifts the flow and sediment transport corridors in outside direction (Figure 6-9). As 

qualitatively indicated in Figure 6-9b, the size of the transported sediment increases from the 

top of the deposition bar towards the toe of the avalanche faces. This sediment sorting on the 

avalanche face is quantified by means of the grain size distributions in the sampling locations 

S3 and S4on the top and near the toe of the deposition bar, respectively (Figure 6-10). 

  

Figure 6-9: Sediment transport corridors, dry zones and avalanche faces based on visual observations 

in the local tributary widening and the confluence zone. The view is from the outer bank into the 

tributary. 

Figure 6-10 compares the grain size distributions in corresponding locations in the reference 

configuration and the configuration with local tributary widening. The grain size distributions 

upstream of the confluence zone in the main channel (S1) and upstream of the local tributary 

widening (S2) should not be affected by the local tributary widening. Differences between the 

grain size distributions in both configurations therefore give an indication on the uncertainty 

in the bed surface sampling procedure. The grain size distribution on the axis of the local 

tributary widening (S5) is considerably coarser than in the reference tributary (S2). This is 

consistent with the reduced effective flow area and increased velocities in the local tributary 

widening. The local tributary widening is characterized by a high heterogeneity in grain sizes, 

as indicated by the considerable differences in the grain size distributions in the locations S5 

(dm= 5.4 mm) and S6 (dm= 0.6 mm). 



Chapter 6: Hydro-morphological implications of local tributary widening for river rehabilitation 

108 

 

Figure 6-10: Grain size distributions in the sampled locations for the reference configuration (full 

lines) and the configuration with local tributary widening (dashed lines).  

6.4 Flow dynamics 

6.4.1 Flow visualization 

Flow expands upon entering the local tributary widening (Figure 6-11). The influence of the 

flow in the main channel induces an asymmetry of the flow expansion, which is deviated 

towards the inner (downstream) bank of the widened zone. At a distance of 0.27 m from the 

entrance of the widened zone, the tributary flow is reattached to the inner bank. The flow 

deviation, however, does not allow the flow to reattach to the outer bank. As a result of this 

deviation, the tributary flow enters the main channel at an angle of around 65° (Figure 6-11).  

At the upstream corner of the confluence, flow originating from the main channel 

protrudes into the local tributary widening and creates a zone of flow stagnation (Figure 

6-11), which is characterized by a slight rise in the water surface elevation. This stagnation 

zone confines the effective width of the tributary flow, which is not larger at the tributary 

mouth than in the reference case (Figure 6-11). As aforementioned, this reduced effective 

width and the reduced flow depth lead to increased tributary velocities and an increased 

tributary momentum flux into the main channel. 
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Figure 6-11: Flow visualisation in the local tributary widening using colour dye indicating the main 

flow features.  

The local tributary widening considerably modifies the flow field in the confluence zone 

(Figure 6-12). The increased height of the deposition bar leads to the formation of a dry zone 

at the inner bank just downstream of the confluence. This dry zone has a length of about 

0.65 m and a width of about 0.08 m. This dry zone and the increased tributary velocities shift 

the flow field further towards the outer bank of the main channel as compared to the reference 

configuration. This is well visualized by the position of the shear layer generated by the 

collision of flow originating from the main channel and the tributary (Figure 6-12). 

 

Figure 6-12: Flow visualisation with colour dye introduced in the tributary. Vertical white lines 

indicate the cross-sections where velocity measurements were performed. The location of the outer 

limit of the shear layers at the water surface is indicated by the full black line (configuration with 

local tributary widening) and by the dashed blue line (reference configuration).  
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6.4.2 The depth-averaged flow field 

Figure 6-13 shows the measured patterns of the unit discharges (qx, qy)=(Uxh,Uyh) (h is the 

local flow depth) and the depth-averaged velocities (Ux,Uy) superimposed on a contourplot of 

the bed morphology in the confluence zone for the configuration with local tributary 

widening. The local increase in depth-averaged velocity confirms the result of the flow 

visualization that the tributary flow is mainly conveyed to the main channel near the 

downstream corner of the confluence. The depth-averaged flow vectors are about parallel to 

the contourlines of the bed morphology, indicating the important role played by topographic 

steering: the flow steers around the shallow zones and concentrates in the deepest zones, 

which is in agreement with the requirements of mass conservation. This leads to considerable 

outwards mass transport in the confluence zone, accompanied by flow 

acceleration/deceleration in the outer/inner half of the cross-section. Downstream of the cross-

section at X = 1.2 m (Figure 6-13), topographic steering leads to inwards mass transport, as 

illustrated by the flow vectors measured in the cross-section at X = 1.4 m. The pronounced 

transverse variations in the flow depth h cause a pronounced non-uniformity of the unit 

discharge Uxh over the width of the post-confluence channel. 

 

Figure 6-13: Contours of the bed morphology and vector representations of the depth-averaged unit 

discharges (qx, qy)=(Uxh,Uyh) (full vectors) and the depth-averaged velocities (Ux,Uy) (dashed 

vectors). The dry zone is indicated by the shadow region.  

The local tributary widening leads to an amplification of the bed gradients (Figure 6-8a), 

which also amplifies the topographic steering of the flow. This is illustrated in Figure 6-14, 
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which assesses the influence of the local tributary widening on the bed morphology and the 

streamwise unit discharge by comparison of corresponding cross-sections in the reference 

configuration and the configuration with local tributary widening. 

 

Figure 6-14: Comparison of the normalized streamwise specific discharge, Uxh/UH, and the bed 

morphology in the reference configuration (dashed lines) and the configuration with local tributary 

widening (full lines). a) At the upstream confluence corner; b) At the tributary axis, c) At the 

downstream confluence corner, d) 0.15 downstream of the confluence, e) 0.65m downstream of the 

confluence. 

The bed morphology and the unit discharge in the cross-section measured at the upstream 

corners of the confluences (X=0.53 m for the reference configuration and X=0.45 m for the 

widened test) are rather similar. The bed morphology and unit discharge are already slightly 

outwards skewed, which is in agreement with the outwards velocities observed in Figure 

6-13. This can be attributed to topographic steering due to the presence of the bar just 

downstream as well as to the obstruction by the inflow originating from the tributary. The 

local tributary widening has a marked influence on the bed morphology and the streamwise 

unit discharge from the cross-section located at the tributary axis on. In the cross-section 

located at the axis of the tributary (Figure 6-14b), bed elevations are higher for the widened 

case due to the higher bed discordance and the increased tributary penetration into the post-

confluence channel (Figure 6-7 and Figure 6-8). This leads to reduced streamwise unit 

discharges in the inner part of the cross-section. Outwards deflection of the flow increases the 
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unit discharge in the outer part of the cross-section. In the reference configuration, the 

maximum unit discharge is found at the outer bank. In the configuration with local tributary 

widening, the outward flow deflection has not yet reached the outer bank and the maximum 

unit discharge is found in the central part of the cross-section. In the cross-section located at 

the downstream corner of the confluence, the local tributary widening causes a global 

decrease/increase of the unit discharge in the inner/outer part of the cross-section. The 

occurrence of a dry zone at the inner bank in the configuration with local tributary widening 

(Figure 6-12 and Figure 6-13) considerably affects the distribution of the unit discharge in the 

cross-section situated 0.15m downstream of the confluence. It amplifies the decrease/increase 

of the unit discharge in the inner/outer part of the cross-section and leads to an increased unit 

discharge at the outer bank. Morphological differences between both configurations have 

about died out in the cross-section 0.65 m downstream of the confluence (Figure 6-8, Figure 

6-14), which corresponds to the downstream limit of the dry zone in the configuration with 

local tributary widening (Figure 6-12). The unit discharge at the outer bank is still 

considerably higher, however, in the configuration with local tributary widening. Due to the 

increased erosion (maximum about 0.015 m or about 15% of the flow depth) and the 

increased unit discharge near the outer bank, the local tributary widening may increase the 

flow attack on the outer bank. 

6.4.3 The 3D flow field 

The local tributary widening does not fundamentally modify the hydrodynamic processes 

shwon in Figure 6-3. The three-dimensional flow patterns in the confluence zone in the 

configuration with local tributary widening are illustrated in Figure 6-15 by means of the 

patterns of the three mean velocity components (ux,uy,uz) measured in five cross-sections 

along the main and post-confluence channels. The contour lines correspond to the streamwise 

velocities (ux) whereas the vectors represent the transverse and vertical (uy,uz) velocities. 

The influence of the tributary is already discernable at the upstream corner of the 

confluence (X = 0.45 m) where considerable outwards velocities occur. Different processes 

contribute to this transverse mass redistribution. The most important is probably topographic 

steering due to the presence of the bar just downstream that directs the flow outwards. As 

shown by the flow visualization, the flow input from the tributary acts as an obstacle (Figure 

6-12) that causes a stagnation zone characterized by a rise in the water level near the inner 
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bank (Figure 6-11). These processes originate at the confluence and weaken with distance 

from the inner bank. 

Flow from the tributary protrudes into the confluence zone and post-confluence channel 

and thereby changes its direction in a zone about 1.5 m long (Figure 6-13). This tributary 

inflow mainly remains near the water surface, which is due to the pronounced bed 

discordance (Figure 6-7 and Figure 6-15b, c). This near-surface flow originating from the 

tributary occupies at maximum about two thirds of the width of the post-confluence channel 

(Figure 6-15d). A considerable two-layer flow structure exists near the confluence mouth: 

flow in the upper part of the water column originating from the tributary is considerably more 

outwards directed than flow in the lower part of the water column originating from the main 

channel. This effect is most pronounced near the downstream corner of the confluence (Figure 

6-15c) where the main tributary inflow occurs. The skewing of both flow layers, however, 

does not lead to the generation of secondary flow cells. A shear layer is generated where both 

skewed flow layers collide (Figure 6-15b-d). The position of this shear layer at the water 

surface deduced from the velocity patterns (Figure 6-15b- d) is in good agreement with the 

position indicated by the flow visualization (Figure 6-12). The momentum input by the 

tributary increases the magnitude of the velocity vector near the inner bank (Figure 6-13, and 

compare Figure 6-15b and Figure 6-15c). The core of maximum streamwise velocities occurs 

in the lower part of the water column near the toe of the avalanche face (Figure 6-15b-d). Its 

coincidence with the transport corridors of the coarsest sediment (Figure 6-9) indicates its 

importance with respect to sediment transport. In the cross-section situated at X = 0.90 m, i.e. 

0.15 m downstream of the confluence (Figure 6-15d), the transverse velocities near the inner 

bank have weakened, but the two-layer flow structure and the core of highest velocities close 

to the bed near the inner bank are still discernable. This cross-section is characterized by 

considerable acceleration of the flow, especially on the slope of the sediment deposition bar 

near the inner bank. This flow acceleration, which plays an important role in the transport of 

sediment supplied by the tributary, can be attributed to two effects. First, the deposition bar 

near the inner bank reaches its maximum height (Figure 6-6), which leads to a considerable 

reduction of the flow area. Second, the near-surface flow originating from the tributary 

occupies about two thirds of the width (see dye visualization in Figure 6-12) which leads to a 

contraction of the flow originating from the main channel. The 3D flow patterns confirm the 

topographic steering of the flow which was identified in the depth-averaged flow patterns 

(Figure 6-13): flow goes outwards over the entire flow depth in regions where the transverse 
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bed slope increases in streamwise direction (around X = 1.1 m according to Figure 6-6) and 

inwards further downstream where the transverse bed slope decreases (Figure 6-15e). 

 

 

 

Figure 6-15: Mean streamwise flow velocities ux (contourlines) and cross-sectional flow vectors (uy,uz) 

measured in the five cross-sections in the main and post-confluence channels indicated in Figure 6-4. 

The two vertical dashed lines represent the boundaries between measurements performed with the 

asymmetrical and symmetrical ADVP configurations, whereas the shaded areas indicate regions 

where the flow measurements are perturbed by the ADVP housing that touches the water surface 

(more information is provided in Chapter 5). The thick black line indicates the position of the shear 

layer as inferred from the velocity patterns (present figures), the patterns of the turbulent kinetic 

energy (Figure 6-18) and the flow visualization (Figure 6-12). The approximated position of the toe of 

the avalanche faces are indicated by the shadow ellipses. 
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Figure 6-15: (continued). 

The key element explaining the differences in the hydro-morpho-sedimentary processes due 

to the local tributary widening is the amplification of the tributary velocities. The effects of 

the local tributary widening on the transverse velocities in the main and post-confluence 

channels are assessed in Figure 6-16. At the downstream corner of the confluence, where the 

dominant tributary inflow occurs (Figure 6-12 and Figure 6-13), the increased bed 

discordance and tributary penetration (Figure 6-7 and Figure 6-8) considerably increase the 

transverse velocities (Figure 6-16a, b). Moreover, these transverse velocities penetrate further 

outwards in the main channel. This increased transverse tributary input amplifies the two-

layer flow structure and its delimiting shear layer generated by the collision of the flows 

originating from the tributary and the main channel. Non-negligible transverse velocities 

directed towards the outer bank occur close to the outer bank, and may enhance the flow 

attack on that bank. These differences induced by the local tributary widening persist in the 

cross-section 0.15m downstream of the tributary widening (Figure 6-16c, d). 

The amplification of the hydrodynamic processes in the confluence induced by the local 

tributary widening are well illustrated in Figure 6-17, which compares the near bed 

(Z/h = 0.2) and near-surface (Z/h = 0.7) velocities in both configurations. 
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Figure 6-16: Comparison between the patterns of the transverse velocity, uy, in the confluence zone measured in the configuration with local tributary 

widening (left column) and the reference configuration (right column). The thick black line indicates the position of the shear layer as inferred from the 

velocity patterns (Figure 6-15), the patterns of the turbulent kinetic energy (Figure 6-18) and the flow visualization (Figure 6-12). The approximated position 

of the toe of the avalanche faces are indicated by the shadow ellipses. 
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Near the inner bank, the near-bed flow from the main channel follows a rather straight path 

and it is directed upslope the bar (most left near-bed vectors in X = 0.45 m and X = 0.60 m in 

the widened configuration and in X = 0.53 m and X = 0.60 m in the reference configuration). 

This upslope flow component conditions the slope of the avalanche faces. The dominant 

tributary inflow (in X = 0.75 m in the widened configuration and in X = 0.60 m in the 

reference configuration) can easily be recognized by the near surface velocities that are 

outwards directed. Their skewing with respect to the near-bed velocities illustrates the two-

layer flow structure. The two-layer structure mainly occurs in the region confined by the shear 

layer, which about coincides with the toe of the avalanche faces. This region is considerably 

wider in the configuration with local tributary widening than in the reference configuration 

(Figure 6-16 and Figure 6-17). 

The presence of the stagnation zone where the tributary and main-channel flows collide 

is clearly discernable in the low near surface velocities, occurring near the tributary axis in the 

widened configuration and near the upstream confluence corner in the reference configuration 

(Figure 6-17). 

 

Figure 6-17: Velocity vectors (ux,uy) near the bed (Z/h=0.; dashed vectors) and near the surface 

(Z/h=0.70, full vectors) superimposed on the local bed morphology. (a) configuration with local 

tributary widening, (b) reference configuration. The dashed circle in (a) indicates the dry zone. 

6.4.4 Turbulent flow structure 

Confluences locally enhance the turbulence activity, which is relevant with respect to the 

mixing of mass, momentum, heat, suspended matter and sediment coming from the main 

channel and the tributary. The patterns of the normalized tke measured in the configuration 

with local tributary widening are displayed in Figure 6-18 for the cross-sections at the 

downstream corner of the confluence (X=0.75 m) and 0.15 m downstream of the confluence 

(X = 0.90 m). Turbulence measurements were only performed in the central part of the cross-

section (as explained in Chapter 5). The most noticeable features are the zones of pronounced 
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tke increase. They occur in the upper part of the water column inside the shear layer and 

further accentuate the two-layer flow structure in the confluence zone. The increased 

turbulence activity may be attributed to two processes. First the collision of the flows 

originating from the main channel and the tributary creates a shear layer (indicated in Figure 

6-18) that is characterized by increased turbulence activity. Second, the momentum input by 

the tributary flow increases the magnitude of the velocities in the confluence zone (Figure 

6-13 and Figure 6-17) and hence also the turbulence activity, since tke scales with the square 

of the mean velocity magnitude. In line with observations in the reference configuration 

(Chapter 5), the core of pronounced tke increase in the shear layer about coincides with the 

preferential corridors of sediment transport (Figure 6-9). 

 

Figure 6-18: Patterns of the normalized turbulent kinetic energy (tke/u*
2) in the cross-sections at (a) 

X=0.75 m, (b) and X=.0.90 m in the configuration with local tributary widening. The characteristic 

shear velocity u* = 0.04 ms-1 used for the normalization is the same as for the reference case (see 

Chapter 5).The shaded areas indicate regions where the flow measurements are perturbed by the 

ADVP housing that touches the water surface (more details in Chapter 5). The thick black line 

indicates the position of the shear layer as inferred from the velocity patterns (Figure 6-15), the 

patterns of the turbulent kinetic energy (present figure) and the flow visualization (Figure 6-12). 
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6.5 Conclusions 

Alpine river systems are often channelized and characterized by a high linearity and a high 

homogeneity in flow, sediment and morphology characteristics. Laboratory experiments 

indicate that the local widening of tributaries can locally improve the ecological potential of 

the river system. In the local widening, the heterogeneity of the sediment substrate, the flow 

velocities and the flow depths is considerably increased and includes such features as dry 

zones and flow stagnation zones. The local tributary widening does not have adverse effects 

on flood safety, neither in the post-confluence channel, nor in the tributary upstream of the 

local widening. Nevertheless the local tributary widening considerably affects the hydro-

morpho-sedimentary processes in the confluence zone. 

Although the local tributary widening allows a realignment of the tributary flow and a 

corresponding reduction in the confluence angle, it leads to an amplification of the hydro-

morpho-sedimentary processes in the confluence zone. This somewhat counterintuitive result 

is due to the reduction of the effective flow area in the local tributary widening and the 

corresponding increase in the tributary velocities and the tributary momentum flux. The 

reduction in effective flow area allows satisfying the requirements of sediment transport 

continuity in the local tributary widening. It occurs by means of a general rise in the bed 

elevation and by a lateral constriction of the flow induced by a zone of flow stagnation at the 

upstream confluence corner. 

The increased tributary velocities accentuate and amplify the two-layer flow structure in 

the confluence zone. Flow originating from the tributary remains in the upper part of the 

water column and is strongly outwards directed. Flow originating from the main channel 

remains in the lower part of the water column and is considerably less outwards directed. This 

two-layer flow structure does not, however, evolve to secondary flow cells. A pronounced 

shear layer characterized by increased turbulence activity develops at the interface between 

flows originating from the main channel and the tributary. 

The increased tributary momentum flux due to the local tributary widening leads to an 

increased bed discordance and a deeper tributary penetration in the confluence zone for the 

studied discharge scenario. Downstream of the confluence zone, higher deposition/erosion in 

the inner/outer part of the cross-section amplifies the bed morphology gradients. This 

represents mainly morphological redistribution, however, because the cross-sectional flow 

area and the water surface elevation remain unchanged. This morphological redistribution 

amplifies the topographic steering of the flow and the corresponding transverse fluxes of mass 

and momentum. It leads to an increased flow attack on the outer bank just downstream of the 

confluence zone.  
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7. Influence of the discharge ratio and local tributary 

widening on the morphodynamics of channel confluences 
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7.1 Introduction 

In alpine regions of Europe, river training works were typically responsible for the 

transformation of wide and braided rivers into straight channels exhibiting monotonous linear 

profiles with a lack of structural diversity, i.e. gravel banks, islands, woody debris, riffles or 

pools. These interventions have impoverished river ecosystems (Dynesius and Nilsson, 1994; 

Lorenz et al., 1997; Dynesius et al., 2004; Formann et al., 2007; Gurnell et al., 2009). 

Currently, only about 10% of the most important rivers of the entire European Alpine region 

are still in a “near-natural” condition (Rohde, 2004). 

From the end of the 20th century, “river rehabilitation” has been a concept heavily used 

by environmental professionals and river management authorities (Bernhardt et al., 2005; 

Reichert et al., 2007). The purpose of rehabilitation is to recover the vital space required for 

the rivers which were degraded by human interventions and to link the sustainable use of 

rivers and wetlands with human well-being (Nakamura et al., 2006). In river systems, the vital 

space ensures the fluvial dynamics and the interface favourable to the river’s fauna and flora. 

Vital space is necessary to maintain the quantity and quality of the water in the natural water 

system in order to safeguard its role in the ecosystem over time (Havinga et al., 2005). Thus, 

rehabilitation projects can be considered as complex processes in which fluvial dynamics, 

environment and flood protection play an important role (Peter, 2006). No adverse impacts on 

flood safety resulting from rehabilitation projects can be tolerated. The insufficient 

understanding of natural conditions may be responsible for the fact that a high proportion of 

rehabilitation projects fail (Lockwood and Pimm, 1999).  

One of the most common solutions used in fluvial rehabilitation schemes is “river 

widening”, which allows the self re-establishment of the natural morphodynamics of a river 

reach (Hunziger, 1999; Nakamura et al., 2006; Formann et al., 2007). Consequently, it 

provides a potential to restore some elements of riparian ecosystems by increasing the amount 

of the in-stream habitat heterogeneity. These solutions have been applied as small-scale 

restoration measures. However, the success of a rehabilitation project depends on the 

intervention effects at the catchment scale (Rohde et al., 2004; Rohde et al., 2005; Weber et 

al., 2009).  

In fluvial networks, river channel confluences are the sites of significant changes in 

flow, bed morphology and sediment transport. Their presence is important notably for the 
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ecological connectivity, flood control, water quality etc (Sloan et al., 2001; Rice et al., 2008; 

Wallis et al., 2009). A good understanding of the flow dynamics, of sediment transport 

patterns and of the development of bed morphology is essential to successfully accomplish 

river rehabilitation projects in these zones.  

Alpine confluences are typically characterized by mountain gravel-bed torrents carrying 

large sediment loads often connecting asymmetrically at large angles with the main river. As 

described in Chapter 5, current knowledge on river channel confluences (Mosley, 1976; Best, 

1987; Best, 1988; Fujita and Komura, 1989; Best and Roy, 1991; Biron et al., 1993; Rhoads 

and Kenworthy, 1995; De Serres et al., 1999; Lane et al., 1999b; Rhoads and Kenworthy, 

1999; Lane et al., 2000; Biron et al., 2002; Boyer et al., 2006) may not be applicable to these 

situations. In Chapter 5, an enhanced conceptual framework for the hydro-morpho-

sedimentary processes in confluences with low discharge and momentum flux ratio and high 

sediment delivery ratio was developed through a laboratory flume experiment of a 90º 

confluence between a small stream and a large channel. These confluences are typical of 

alpine environments. As shown in Figure 7-1, bed morphology is characterized by the 

deposition of a bar downstream from the confluence. Differences between the water depths in 

the tributary and in the main channel are linked to the formation of large bed discordance 

between the confluent channels. Moreover, there is an absence of a marked scour hole. 

Concerning the flow, the tributary momentum input, associated with the presence of the 

deposition bar lead to a considerable mass redistribution in the confluence zone as the main 

flow is pushed towards the outer bank. Bed discordance is responsible for the presence of a 

two-layer flow, which plays an important role in dampening the formation of a flow 

recirculation zone downstream of the confluence. The model has been validated by field 

observations and contributed in gaining insight on the morphodynamics processes of alpine 

confluences, which were not yet been considered in previous studies.  
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Figure 7-1: Conceptual framework representing the main morphological and flow features of a 

channel confluence found in alpine regions (Chapter 5). 

The water and sediment supply from tributaries can produce important geomorphological 

adjustments in the main channel, thus increasing the physical heterogeneity in the recipient 

channel (Rice et al., 2006; Benda, 2008). Bourgeois (2006) performed an extensive analysis 

of the increase of the “ecological potential” of the Upper Rhone River by an optimal 

connection of its tributaries in order to guarantee the lateral connectivity of the fluvial system. 

The analysis is based on four different domains: ecomorphology, flow, water quality and 

connectivity and it was applied at 20 important confluences of this river. It was concluded that 

the Upper Rhone basin is currently in an ecological poor state not only because of the 

channelization main river but also the regulation of it tributaries, as well as the presence of 

fixed weirs in some confluence zones (Figure 7-2). Increasing the ecological value of most 
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regulated confluences in the Upper Rhone Valley, however, can be achieved with a relatively 

small investment (Bourgeois, 2006). 

 

Figure 7-2: a) Upper view of the channelized Salanfe River (tributary of the Upper Rhone) and b) 

view of the Borgne River showing the fixed weir upstream of the confluence with the Upper Rhone. 

In Chapter 6, the possibility to rehabilitate river confluences by means of a local widening of 

the tributary near its mouth was investigated. The results of the laboratory flume experiment 

indicated that such a procedure would induce localized changes in the hydro-morpho-

sedimentary processes. Globally, it has been suggested that local tributary widening of a 90º 

confluence such as found in alpine environments would enhance its ecological potential by 

increasing of the spatial variation of the flow widths, flow depth and flow velocities in the 

widened zones. It provides a potential local hotspot for biodiversity along confined, 

channelized and regulated river systems. Furthermore, it does not create noticeable adverse 

effects on the flood safety in the tributary and the main channel. Due to the influence of the 

main channel flow, the existing stochastic models developed to predict the morphological and 

hydraulic consequences of river widening (Stewardson and McMahon, 2002; Schweizer et al., 

2007a; Schweizer et al., 2007b) are not applicable for confluence cases. 

This paper further investigates the local widening of tributary channels near the 

confluence with a main channel; in the perspective of river rehabilitation. The influence of 

changes in discharge ratio and in the shape of the widened area on the morphodynamics of 

confluence zones is examined by means of systematic laboratory experiments. It aims to 

answer four important questions:  

• What is the influence of the discharge and momentum flux ratios on the morphology of 

channelized confluences? 
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• Does a local tributary widening have adverse effects on flood safety of confluence 

zones? 

• How robust/stable is the resulting morphology with respect to changes in the geometric 

configuration of the tributary widening? 

• What is the ecological potential of a local tributary widening in confluence zones? 

The analysis is divided in three parts. First, the results of laboratory experiments 

performed with a reference configuration (without widening) are described (section 7.3). In 

the second part, the influence of different tributary widening is investigated for different 

discharge scenarios (section 7.4). The last topic of the paper (section 7.5) discusses the 

application of local tributary widening in the framework of river rehabilitation projects. 

7.2 Experimental investigation 

In order to design the experimental set-up and the conditions for the research project, a 

detailed analysis of the Upper Rhone River basin (Switzerland) and its twenty main 

confluences between Brig and Lake Geneva was conducted. The analysis is based on the last 

reach of the tributaries in the floodplain before its junction with the Rhone. This basin was 

chosen because of its representativeness of regulated alpine river systems. Furthermore, 

rehabilitation projects are planned in this basin and their design suffers from a lack of 

knowledge about the morphodynamic processes involving the confluences zones.  

The main hydraulic and geometrical characteristics of the Upper Rhone confluences 

used for designing the experimental set-up and the experimental conditions are summarized in 

Table 7-1.  

Table 7-1: Hydraulic and geometrical characteristics of the main confluences of the Upper Rhone 

basin. 

Angle [°] B t /B m B m /B p-c
Tributary bed 

slope [%]
Q2 t /Q2 m Q5 t /Q5 m Fr tQ2 Fr tQ5 M r _Q2 M r _Q5

Average 62 0.22 1.02 1.1% 0.10 0.09 0.83 0.83 0.11 0.08
Max 90 0.54 1.27 4.0% 0.32 0.31 1.29 1.30 0.45 0.30
Min 30 0.07 0.71 0.0% 0.01 0.01 0.03 0.03 0.01 0.01  

Generally, the Upper Rhone confluences are characterized small steep tributaries 

(average tributary slope of 1.1%). During channel-forming events (Q2 and Q5), the discharge 

and momentum flux ratios are relative low (0.01<Qr<0.32 and 0.01<Mr<0.45 respectively). 

From the analyses of the existing literature (Figure 7-3), it is possible to see that the couples 
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Mr versus Qr characterizing the Upper Rhone confluences are considerably lower and out of 

the range than those already investigated in river confluence studies. 

 

Figure 7-3: Couples of the momentum flux ratios (Mr) versus the discharge ratios (Qr) studied in 

literature and those characterizing the Upper Rhone confluences. With the exception of Best (1988), 

who investigated laboratory confluence, all the other works considered field measurements.  

The experimental facility was built from an existing straight glass sided flume 8.5 m long and 

0.50 m wide located at the École Polytechnique Fédérale de Lausanne (EPFL, Switzerland). 

The width of this channel, assumed as the main channel (Bm/Bp-c = 1) was used to determine 

the width of the tributary channel, which was made in PVC. From Table 7-1, the average 

value of Bt/Bm is equal to 0.22 for the Rhone River thus resulting in a very small tributary 

(~0.10 cm) if scaled exactly. In order to avoid laboratory scale effects, the tributary width was 

chosen to be equal to 0.15 cm corresponding to a ratio Bt/Bm = 0.30. Although higher than the 

average found along the Upper Rhone, this value is still representative for the studied area.  

The tributary (4.9 m long) and the main channel are connected at a right angle (90°), 

3.60 m downstream of the inlet of the main channel. The angle corresponds to the maximum 

value observed at the confluences in the Upper Rhone valley (Table 7-1). The choice of 90° 

confluence angle is based on the fact that the lateral valleys along the Upper Rhone corridor 

are almost perpendicular to the main channel. The present state of the confluences zones has 

been reconstructed during the river training works and consequently the current angles are not 

natural. Furthermore, the local widening should allow the tributary channel to adjust freely its 

confluence angle. 

The experimental set-up is schematically shown in Figure 7-4. All the results presented 

in this paper are related to the reference axes (X, Y, Z).  
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Figure 7-4: Experimental set-up. The locations of the bed samples are indicated by the dark circles. 

In the present experimental investigation, the long-term averaged state of a dynamic 

equilibrium is investigated and therefore, an approach based on steady flows and sediment 

discharge was adopted. Sediments are only introduced in the tributary and there is no 

sediment transport in the main channel upstream of the confluence. This procedure aims at 

reproducing the situation of river confluences during tributary flood events where the amount 

of the tributary bed load discharge is relatively more important than that of the main channel. 

In fluvial systems, however, the constant variation of discharges are fundamental elements of 

river ecosystems (Schweizer et al., 2007b; Tal and Paola, 2010), guarantying for example the 

dynamics of the channel morphology, the remobilization of the bed subtract and the supply of 

the organic matter (Rice et al., 2008; Wallis et al., 2009). 

Three water discharge scenarios were chosen in the range of the discharge ratios Qt/Qm 

presented in Table 7-1: a “low discharge scenario”, where Qt=2 l/s and Qm=18 l/s 

(Qt/Qm=0.11), an “intermediate discharge scenario” with Qt=2.6 l/s and Qm=17.4 l/s 

(Qt/Qm=0.15) and a “high discharge scenario” where Qt=3.7 l/s and Qm=16.3 l/s (Qt/Qm=0.23). 
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The magnitude of the discharges was primarily based on the analyses of width-to-depth ratios 

(B/h). The criterion was to have B/h≥5 in the main and post-confluence channels.  

Figure 7-5a shows the particle size distribution of the poorly-sorted sediments used in 

the experiments, which consists of a mixture of 80% sand (0 - 4 mm) and 20% gravel (4-

8 mm). A picture of the mixture is depicted in Figure 7-5b. The sediments of the bed material 

and the solid discharge have a d50 = 0.82 mm, dm = 2.3 mm and d90 = 5.7 mm. The sediment 

characteristics and the solid discharge adopted for all experiments satisfy two requirements:  

• The grain size distribution, characterized by the dimensionless grain size distribution 

with respect to the average diameter (dm) is representative of the Upper Rhone River. 

The gradation coefficient of the used mixture is σ = 4.15, which is representative for the 

grain size distributions found in the Upper Rhone (Figure 7-5a).  

• The solid discharge in the tributary channel was set at Qs,t=0.30 kg/min for all tests. 

This sediment input led to longitudinal channel slopes that are representative of the 

Upper Rhone tributaries (Table 7-1).  

 
 

Figure 7-5: a) Dimensionless grain size distribution of the bed surface of the Upper Rhone River at 

different locations and that of the sediment mixture used for the experiments and b) a picture of the 

adopted sediments mixture. 

Four geometric configurations of the confluence zone (Figure 7-6) including the reference 

case (no widening) and three local tributary widening are analysed. For the “Small” 

configuration, the tributary width has been symmetrically doubled (Bw = 0.30 m) over a length 

(Lw) of 45 cm while the “Medium” configuration considers a tributary three times wider 

(Bw = 0.45 m) within the same length (Lw = 0.45 m). The “Large” configuration is composed 

by a tributary also three times wider (Bw = 0.45 m) over a length Lw = 0.60 m. 
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The choice of the widening configurations is based on two criteria: (i) the maximum 

width of the enlarged zone is limited by the width of the main channel, as wider 

configurations could result in a local main channel widening and (ii) the length of the widened 

zone is limited by the fact that for longer widenings, the flow reattachment downstream of the 

entrance of the enlarged zone would occur symmetrically and thus the effect of a local 

widening in the confluence zone would be lost.  

 

Figure 7-6: Configurations of the confluence zone. 

The reference axis is the same as presented in Figure 7-4. 

For all experiments, the beds of the main channel and of the tributary were initially covered 

with the poorly sorted sediment mixture. At the beginning of the experiment, the bed of the 

main and post-confluence channels was flat and the longitudinal slope of the tributary at its 

mouth was approximately 0.05%. An adjustable tailgate at the end of the post-confluence 

channel controlled the flow depth within the entire flume. The water level at the end of the 

channel was kept constant at 0.07 m. At the beginning of the test, it leads to flow depths of 

0.09 m in the main channel and 0.06 m in the tributary.  

Due to the initial deficit of sediment transport capacity, all experiments are 

characterized by aggradation in the tributary. The achievement of equilibrium was mainly 

assessed on the basis of changes in the bed morphology. The duration of the tests varied from 

22 and 24 hours.  

Several campaigns of topographic surveys were performed during each run. Bed 

elevations are measured using a Mini EchoSounder probe (UltraLab UWS) that works with an 

ultrasonic-impulse-run time procedure with a precision of ±1 mm (Kantoush et al., 2008). The 

instrumentation is installed on a movable frame that covers part of the experimental set-up, 

3.80 m in the main and post-confluence channels and 3.00 m in the tributary (Figure 7-4). For 

each series of measurement, 12 longitudinal profiles laterally spaced by 4 cm are measured in 

the main and post-confluence channels. The distance between measured points of each profile 
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is 9 mm. In the tributary, measurements are done in cross-sections spaced by 5 cm near the 

confluence zone (0.5<Y<0.95 m) and 20 cm in the upstream reach. For the reference 

configuration, the cross-sections of the tributary are rectangular and for this reason, only one 

point at the middle of the section is measured. In the enlarged zones, several cross sections 

(X-axis) spaced by 5 cm are measured. As for the main and post-confluence channels, the 

distance of the measured points in each cross-section is 9 mm. The point topographic data are 

then linearly interpolated to obtain the bathymetric maps. 

Water elevations are measured in three points (Y = 0.05, Y = 0.25 and Y = 0.45 m) of 

seven cross-sections in the main and post-confluence channels and in eight points of the 

tributary upstream of the widening. In the enlarged zone, cross-sections (X-direction) 

distanced by 5 cm are measured and in each section, three points are recorded. Each point is 

recorded during 10 s with a frequency of 128 Hz. and an average value is considered for the 

analyses. 

7.3 Reference configuration 

Equilibrium bed morphologies of the confluence zones (0<X<2 m and 0<Y<1.2 m) as well as 

the position of selected cross and longitudinal sections for all tests are shown Figure 7-7. All 

the longitudinal sections analysed in this paper consider the entire domain of measurements 

(0<X<4 m and 0<Y<3.5 m). This section analyses the influence of the different discharge 

scenarios on the morphodynamics of the reference configuration (first line of the Figure 7-7). 
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Figure 7-7: Equilibrium bathymetry of the main, post-confluence and part of the tributary channels for the three discharge scenarios and the reference and 

widened configurations. Contour lines denote the bed elevation, Z[m]. The limit of the sediment bar corresponds to the main channel bed elevation (elevation 

Z=0.02 m) and is marked by thick black line. The location of the cross and longitudinal sections are represented by the dashed lines. 



Chapter 7: Influence of the discharge ratio and local tributary widening on the morphodynamics of 

channel confluences 

134 

7.3.1 Hydraulic characteristics 

For all experiments, the flow is subcritical in the main and post-confluence channels (Table 

7-2). The flows in the tributary for the tests Low-Reference and Intermediate-Reference are 

characterized by a supercritical regime with Froude Numbers Fr = 1.30 and 1.20 respectively. 

Froude Number is defined as gH/UFr = , where U denotes the mean velocity [ms-1], g, the 

acceleration due to the gravity [ms-2] and H the flow depth [m]. This leads to a change of flow 

regime in the confluence zone by means of a weak undulated hydraulic jump (Chow, 1959). 

The test High-Reference is characterized by a transcritical flow (Fr~1) in the tributary. 

The hydraulic conditions of the experiments performed with the reference configuration 

are shown in Table 7-2. At equilibrium conditions, momentum flux ratios Mr resulting from 

the reference tests are equal to 0.20, 0.27 and 0.49, respectively for the runs Low-Reference, 

Intermediate-Reference and High-Reference. These values are in the range of those found in 

the Upper Rhone valley (Table 7-1).  

Table 7-2: Hydraulic characteristics of the investigated discharge scenarios 

Low 18.0 2.0 0.11 0.3 0.34 1.30 0.70 0.20

Intermediate 17.4 2.6 0.15 0.3 0.31 1.20 0.70 0.27
High 16.3 3.7 0.23 0.3 0.25 1.00 0.70 0.49

Q m 

[l/s]
 Q t 

[l/s]
 Qs t 

[kg/min]
Fr t Fr p-cScenario Q t /Q m Fr m Mr

 

 

Figure 7-8: Momentum flux ratios estimated for the Upper Rhone confluences and resulting from the 

experiments. 
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7.3.2 Equilibrium water surfaces and bed morphologies 

The main morphological features resulting from the different discharge scenarios tested with 

the reference configuration (first line of the Figure 7-7) are quite similar. This is in agreement 

with the conceptual framework proposed in Chapter 5 based on the low discharge scenario. 

However, differences concerning the magnitude of the bed discordance, tributary penetration, 

deposition bar and erosion zone can be highlighted. 

The equilibrium bed morphologies in the post-confluence channels are characterized by 

the formation of a substantial deposition bar near the inner bank which attains its maximum 

height just downstream of the confluence (Figure 7-9a) and then, decreases with a width-

averaged slope of 1.1% towards downstream. A corridor of fine sediment transport near the 

inner bank is associated with a small depression in the post-confluence channel (Figure 7-9).  

With the increase of the discharge ratio, the volume of the sediment bar reduces and the 

deposits are shifted towards downstream. For the run Low-Reference, the sediment bar attains 

its maximum elevation of 0.09 m at X = 0.85 m, while for the runs Intermediate-Reference 

and High-Reference the highest points are at the elevations 0.082 m (X = 0.97 m) respectively 

0.07 m (X = 1.07 m). At the centre of the main and post-confluence channels the longitudinal 

profile of the deposit is the same for all tests (Figure 7-9b). 

The presence of the deposition bar causes a reduction of the cross-sectional area 

downstream of the confluence. As the flow upstream of the confluence is subcritical, this 

reduction in area leads to the increase of energy in the main channel and subsequently the 

acceleration of the flow, which is responsible for the slight erosion along to the sediment bar 

(Figure 7-9c). The erosion slightly increases with the increase of the discharge ratio.  
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Figure 7-9: Longitudinal sections of the main and post-confluence channels at a) Y=0.45 m, b) 

Y=0.25 m and c) Y=0.05 m showing the water levels and bed elevations for the three tests performed 

with the reference configuration (Bt=0.15 m). 

As the solid discharge and the composition of the sediment input material are constant for all 

tests, the increase of the tributary discharge leads to an increase of the tributary flow depth 

(Ht=0.02 m, 0.026 m and 0.04 m respectively for the low, intermediate and high discharges) 

and a reduction of the equilibrium tributary bed slope (St~1.9%, 1.5% and 1.2% respectively 

for the low, intermediate and high discharges). Therefore, bed discordance decreases with the 

discharge ratio, which is in accordance with the conceptual model describing bed 

discordances in Chapter 5. Differences in bed elevation of 0.09 m, 0.078 m and 0.072 m are 

observed for the runs Low-Reference, Intermediate-Reference and High-Reference 

respectively. Another important observation is related to the tributary penetration into the 
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main channel. As shown in Figure 7-10 (dashed ellipse), it decreases from the Low-Reference 

test to the High-Reference tests.  

 

Figure 7-10: Longitudinal profiles of the tributary channel at X=0.60 m showing the final water and 

bed elevations for the tests performed with the reference configuration. The dashed ellipse indicates 

the tributary penetration into the main channel. 

7.3.3 Influence of the discharge ratio and the momentum flux ratio on the hydro-

morpho-sedimentary processes in the reference case 

The imposed hydraulic (constant water discharges and fixed water level at the downstream 

end of the post-confluence channel) and sediment supply conditions (constant solid 

discharges and sediment characteristics) lead to equilibrium morphodynamic situations, which 

can be parameterized by the momentum flux ratio Mr=(ρQUt/ρQUm) between the tributary 

and the main channel. Here, ρ is the water density [kgm-3], Q the discharge [m3s-1], U the 

mean velocity [ms-1] and the subscripts t and m represent respectively the tributary and the 

main channels. Since this parameter takes into account the ratio between the upstream 

discharges and also the ratio between the flow velocities and considering that in uniform 

conditions flow velocity is a function of the bed slope, it is the most appropriate control 

variable for describing the hydro-morpho-sedimentary processes in confluences (Biron et al., 

1993; Rhoads and Kenworthy, 1995; Biron et al., 1996a; Rhoads and Kenworthy, 1998; Biron 

et al., 2002; Boyer et al., 2006). 

Increasing the discharge ratio leads to an increase of the discharge that is confined near 

the inner bank by the main channel flow and also indirectly increases the sediment transport 

capacity in the tributary. This explains the reduction of the tributary penetration and of the 

sediment volume in the bar observed with the increase of the tributary flow.  

Visual observations of the surface flow indicate that the lateral expansion and intensity 

of the shear zone increases slightly with the increase of the momentum flux ratio (Figure 

7-11). As described in Chapters 5 and 6, the lateral expansion of the bar (here delineated by 
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the elevation curve 0.02 m, see Figure 7-7) is directly linked to the outer limits of the shear 

layer as seen from the above. The greater lateral expansion of the shear layer is associated 

with a decrease of the intensity of the two-layer flow and to a greater deflection of the main 

flow towards the outer bank. The lateral expansion of the shear layer induces a greater 

acceleration of the main flow which in turn generates more erosion of the bar side (Figure 

7-9c). 

These results are interesting because one could expect that an increase in tributary 

discharge would cause a shift of the shear layer towards the outer bank of the post-confluence 

channel. This is not the case and the outside edge of the shear layer is found at about the same 

position for the three flow conditions. This indicates that the system is mainly determined by 

the sediment input, which conditions the morphology in the confluence zone and the post-

confluence channel (where the solid and water discharges are the same for all configurations). 

And this morphology determines the position of the shear layer (it seems to occur above the 

toe of the avalanche faces) and the global flow distribution.  

The behaviour of the two-layer flow due to the presence of the bed discordance in 

confluence zone described in Chapter 5 is also modified with the increasing discharge ratios. 

The low discharge scenario leads to low momentum flux ratio and higher bed discordance. 

Consequently, near-bed flow coming from the inner bank of the main channel is not deflected 

completely and part of the main channel flow slips underneath of the tributary flow towards 

and/or along the inner bank of the post-confluent channel. The increase of the tributary flow 

(and decrease of the main channel flow) leads to smaller bed discordance and a higher 

momentum flux ratio. Therefore, the main channel near-bed flow is more influenced by the 

tributary momentum input and its deflection towards the outer bank of the post-confluence 

channel increases.  

The second line of the Figure 7-11 illustrates the confluence zone for the three runs with 

colour dye introduced only in the main channel. It shows that for the test Low-Reference, 

water coming from the main channel is found in the inner bank downstream of the 

confluence. The portion of the water originating from the main flow that passes through to the 

inner bank decreases with the increase of the discharge ratio.  



Chapter 7: Influence of the discharge ratio and local tributary widening on the morphodynamics of 

channel confluences 

139 

 

Figure 7-11: Flow visualisation of the confluence zone for the three investigated discharge ratios with 

the reference configuration. First line: colour dye is injected only in the tributary. Second line: colour 

dye is injected only in the main channel. The approximate flow stagnation zone and the limits of the 

shear layer zone are shown by the dashed lines. 

The above observations suggest that the near-bed flow has an important influence on the 

construction and elevation of the bar and on the slope of the avalanche face along the bar. The 

slope of the avalanche faces decreases with increasing tributary discharge. This means that 

less upslope flow is required to maintain this slope in equilibrium. And hence a less 

pronounced two-layer structure of the shear layer is generated. 

As described in Chapters 5 and 6, the confluence zones induces a significant sorting of 

grain sizes. Despite the small magnitude of the differences in sediment size sampled at the 

same location for different discharge scenarios, some important observations can be 

highlighted. It can be explained in first approximation by the pseudo-equation proposed by 

(Lane, 1955): 

d,Q~Es,Q s  Eq. 7.1 

where Qs and d are the flux and characteristic grain size of bed material load supplied 

and Q and Es denote the water discharge and energy gradient respectively.  
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• In the main channel upstream of the confluence, the reduction of the main flow 

discharge (Qm) due to the increase of the discharge ratio is responsible for the reduction 

of the fine material transported. Therefore, the average diameters of the material 

constituting the bed surface decrease. 

• In the tributary channel, the term on the right-hand side of the Eq. 7.1 remains constant 

for all tests. It explains the small changes in the sediment size constitution (d) measured 

at the flume. 

• As described in section 7.3.2, the increase of the discharge ratio is associated with the 

reduction of the sediment deposition on the bar. Generally, higher depositions are 

associated to fine sediments. 

• In the avalanche faces, higher discharge ratios lead to a coarsening of the bed material 

and it is explained by the increase of the discharge and consequently the shear stress 

over the avalanche faces.  

 

Figure 7-12: Average diameters (dm) of the bed surface sampled at the different locations. 

7.4 Widened configurations 

In this section, the three investigated widened tributary geometries are presented for the three 

discharge scenarios and their changes in comparison with the reference cases are discussed. 

The bathymetries including the main channel, part of the post-confluence channel, the 

widened zones and part of the tributaries for all configurations are presented in Figure 7-7.  

As illustrated by the cross-sections in the enlarged zones at Y= 0.75 m shown in Figure 

7-13, the new equilibrium situations in the widening zones are characterized by higher bed 

elevations compared to the reference configurations. The adjustments of new bed elevations 
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are generally associated with the decrease of flow depths and the consequent increase of flow 

velocities. The examination of Figure 7-13 reveals two important morphologic behaviours in 

the enlarged zones. For the low and intermediate Qr, sediment deposition occurs near the 

outer bank of the widened zone where bed elevations increase and as a result the talwegs are 

found near the inner bank of the widened zone. The only exception concerns the test 

Intermediate-Medium, where the bed elevations of the centre of the widening are similar of 

those measured for the test Intermediate-Small but the outer bank of the widening was not 

filled by the sediments. At high discharge ratios (higher Mr), no sediments transported by the 

tributary reach the outer bank. Consequently, no deposition occurs in this part of the widened 

zone. Sediments transported by the tributary are mainly deposited near the inner bank and 

therefore the cross-sections are characterized by a lateral slope towards the outer bank.  

 

Figure 7-13: Cross-sections at Y=0.75 m in the tributary mouth showing the water levels and bed 

elevations of all tests. a) Low discharge ratios (Qr=0.11, Mr=0.20), b) Intermediate discharge ratios 

(Qr=0.15, Mr=0.27) and c) High discharge ratios (Qr=0.23, Mr=0.49). See Figure 7-7 for the 

location of the cross-sections. 

7.4.1 Influence of the widening on the morphodynamics of the main and post-confluence 

channels 

Local tributary widening leads to important morphological development of the enlarged 

zones. However, it is only responsible for local alterations in morphodynamics of post-

confluence channels. As described in Chapter 6 for the Low-Small test, there is a local 

increase of the maximum height of the deposition bar which influences the behaviour of the 

two-layer flow discussed in Chapter 5. The near-bed flow coming from the inner bank of the 
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main channel is more deflected towards the outer bank. In addition, there is a re-fining of the 

sediments deposed to the deposition bar.  

The analysis of the width-averaged values of water levels and bed elevations in the main 

and post-confluence channels of the entire dataset (Figure 7-14) reveals that there are no 

important differences between the investigated configurations tested with the same discharge 

ratio. The variations of the deposited volume of sediments are limited to the confluence zone 

and the differences in water levels upstream of the confluence are negligible, being less than 

5 mm. These results confirm the findings described in Chapter 6 for different discharge 

scenarios and tributary configurations.  

 

Figure 7-14: Width-averaged water levels and bed elevations at the main and post-confluence 

channels for all tests. a) Low discharge ratios (Qr=0.11, Mr=0.20), b) Intermediate discharge ratios 

(Qr=0.15, Mr=0.27) and c) High discharge ratios (Qr=0.23, Mr=0.49). 
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7.4.2 Influence of the widening on the upstream reach of the tributary 

Figure 7-15 illustrates the longitudinal profiles of the tributary (X = 0.60 m) showing the 

water levels and bed elevations for each of the discharge scenarios and tributary 

configurations. For all tests, the global differences in water level and bed elevation related to 

the reference configuration have been calculated for the reach upstream of the widened zones. 

The mean deviations (ZWidened- ZReference) of the entire dataset are typically smaller than the d90 

of the sediments used in the experiment and therefore, the differences can be considered to be 

negligible.  

 

 

 

Figure 7-15: Longitudinal profiles along the tributary mid-channel axis (X=0.60 m) showing the 

water level and bed elevations for the different geometric configuration for a) the Low discharge 

ratios (Qr=0.11, Mr=0.20), b) the Intermediate discharge ratios (Qr=0.15, Mr=0.27) and c) the High 

discharge ratios (Qr=0.23, Mr=0.49). 
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Although there are small differences in the absolute bed and water elevations in the tributary 

channel upstream of the widened zone, the overall bed and water slopes do not change 

between the runs performed under the same discharge conditions for the different geometries. 

These important results indicate that the local widening of the tributary does not affect the 

upstream hydraulic and morphological behaviour of the tributary channel. 

7.4.3 Morphodynamics at the widened zone 

The interaction between flow dynamics and sediment transport in the widened zones creates 

complex three-dimensional bed morphologies, without modifying the water levels. Grain 

sorting and aggradation are the two dominant morphological processes responsible for the 

development of equilibrium beds.  

Different morphodynamic responses are associated with the different shapes of the 

enlarged zone and hydraulic conditions. Figure 7-16 shows the flow behaviour in the enlarged 

zone of the nine tests performed with the widening configurations. For all cases, the flow 

limits indicated are based on the observation of the surface flow using colour dye. Three 

important flow features can be distinguished in the enlarged zones. (i) The main flow 

corridors (mfc) recognized by the presence of the colour dye in the flow and the coarse 

material at the bed surface. It is usually oriented towards the inner bank of the widened zone. 

(ii) The dry zones (dz), where the sediment deposition of quite fine material generally attains 

the flow surface. (iii) The flow stagnation zones (fsz), where the flow depths are relatively 

high and some recirculation is observed.  

The main tributary flow detaches from the confining lateral walls and expands laterally 

as it enters the widened zone. Due to the relatively short length of the widened zone (Lw), the 

tributary flow appears to be influenced by the main channel flow well upstream from the 

tributary mouth. Consequently, the global lateral expansion of the tributary flow does not 

occur symmetrically on both sides of the widened zone, as is typically the situation in straight 

channels without the influence of lateral inputs (Hunziger, 1999). For the present experiments, 

flow reattachment only occurs at the inner bank of the tributary.  

The difference between the dry zones and the flow stagnation zones is remarkable. On 

the one hand, the flow detachment at the entrance of the widened zone creates flow 

recirculation zones at both upstream corners of the enlarged areas that are mainly supplied by 

the tributary flow. In the case where fine sediments carried by the tributary are transported 
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into these zones, it tends to settle, filling up this part of the channel and forming the dry zones 

(Figure 7-16a). On the other hand, visual observations show that the flow stagnation zones are 

supplied by the main flow (Figure 7-16g). Therefore, no fine sediments reach these zones and 

consequently there is no deposition.  

For the low discharge ratio scenarios (Figure 7-16a-c), the morphologies on the 

enlarged zones are quite similar, characterized by a complete filling up of the widened area. 

The formation of both the upstream dry zones occurs for all tests. The inner dry zones are 

confined while the outer dry zones extend along borders of the main flow corridors.  

The intermediate discharge scenarios (Figure 7-16d-f) show the most important 

difference between the widened configurations. The small (Figure 7-16d) and large (Figure 

7-16e) geometries are characterized by the presence of two dry zones, similar to those 

encountered for all geometries of the low discharge scenario. The morphodynamic behaviour 

observed for the medium widening (Figure 7-16e) is marked by the presence of a flow 

stagnation zone on the outer bank of the widening and a confined dry zone on the inner bank. 

The outer bank is not completely filled by the sediments.  

The presence of flow stagnation zones (fsz) at the outer bank of the widening for the 

high discharge scenarios is the most important characteristic of these tests. As explained 

above, there is no sedimentation in these zones. Therefore, the final bathymetry of the 

enlarged zones is characterized by a lateral slope towards the outer bank (Figure 7-13).  
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Figure 7-16: Flow visualization of the widened zones for the nine runs using colour dye. 

“dz” denotes the dry zones, “mfc” the tributary main flow corridors and “fsz” the flow stagnation 

zones. 

The superposition of the main flow zones of different widening configurations illustrated in 

Figure 7-17 shows important similarities between the different configurations. For all 

discharge scenarios tested with the same widening length (Small and Medium, Lw = 0.45 m), 

the outer limits of the main flow corridor do not change substantially.  

The efficiency of the widening on the lateral expansion of the main flow increases for 

the tests performed with the large configurations, for both the inner and outer flow limits. As 

the distances from the entrance of the widening zone to the confluence increases, main flow 

corridors have more freedom to widen before being influenced by the main channel flow. For 
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the investigated configurations, the increased length of the widened zone, however, does not 

influence the asymmetry of the flow expansion. Even for the large widening, none of the 

discharges scenarios conduced to outer flow reattachment.  

As shown in Figure 7-17, the main flow expansion towards the outer bank as measured 

from the central axis of the tributary channel is influenced by the length of the widening. For 

all discharge scenarios, there are no differences between the outer expansions of the tributary 

main flow for the widening with the same length (Small and Medium). For these cases, the 

maximum outer widths are around 0.12 m for the low discharges, 0.10 m for the intermediate 

and 0.075 m (no expansion) for the high discharges. However, a significant flow widening 

towards the outer bank is observed when the length of the widening increases from 0.45 m 

(3*Bt) to 0.60 m (4*Bt). For the Large widening case, the outer flow width reaches 0.17 m for 

the low and intermediate discharge scenarios while it reaches around 0.11 m for the high 

discharge test. This behaviour is due to the increased distance from the widened zone entrance 

to the moment where the tributary flow starts being influenced by the main channel flow due 

to the confluence. 

 

Figure 7-17: Tributary main flow corridors observed in the widened zones.  

a) Tests with low discharge ratio, b) tests with the intermediate discharge ratios and c) tests with the 

high discharge ratios. 

In all the tests with a widened zone, the presence of the inner bank in the constrained the 

lateral flow expansion as the flow always reattaches to the inner wall. The distances of 

reattachment measured from the entrance of the widening (Lr) are, however, different and 

they depend upon the momentum flux ratios and the width of the widening. As shown in 
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Figure 7-18, the values of Lr differ only by ±2 cm between the Medium and Large 

configurations for each discharge scenario. Some similarity in the initial flow expansion 

angles can also be observed between the different tests. For the low and intermediate 

discharge scenarios and for all widening configurations, the flow expansion begins 

symmetric, before being influenced by the flow in the main channel. In these cases, an 

approximate angle of 15° (referred to the Y-axis) is observed. The situation is quite different 

for the high discharge tests. Flow expansion is asymmetric very early after the tributary flow 

becomes unconstrained with the outer part showing an angle of 5° and the inner part an angle 

of 15°. This can be explained by the presence of the flow stagnation zone on the outer part of 

the widened region, which avoids the outer tributary flow expansion. 

 

Figure 7-18: Tributary main flow corridors observed in the widened zones.  

a) Tests with low discharge ratio, b) tests with the intermediate discharge ratios and c) tests with the 

high discharge ratios. The tributary flow corridors are overlaid with reference to the entrance of the 

widened zones.  

As depicted in Figure 7-19, the main tributary flow corridor (mfc) can be divided in three 

phases in the widening zone. The expansion phase occurs just after the entrance of the 

widening zone and for the low and intermediate discharges, it does not seem to depend on the 

main channel. In this part, the flow expands and is at the same time deflected towards the 

inner bank (Figure 7-16). Contrary to what is observed at rivers with straight reaches that 

have been widened, the contraction phase of the flow is not due to the channel narrowing 

downstream of the widening. Instead, it is due to the presence of the confluence, which 

induces the formation of the flow stagnation zone that consequently causes the deviation of 

the tributary flow. Between the expansion and the contraction phases, there is an 
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“intermediate zone” which depends on the widening shape and on the hydro-sedimentary 

conditions. 

The efficiency of each geometry configuration to enhance the expansion of the tributary 

flow decreases with the increase of the discharge ratio. Different responses are, however, 

related to the geometric variations of the widening zone. As illustrated by Figure 7-19, the 

maximum width of the tributary main flow corridor is around 0.26 m (1.75*Bt) for the Low-

Small test while it is only 0.22 m (1.5*Bt) for the High-Small test. It corresponds 

approximately to 88% and 73% respectively of the total available width. For the medium 

configuration, the situation is the same. The main flow corridor widens to 0.35 m (2.3*Bt) for 

the Low-Medium test and to 0.30 m (2.0*Bt) for the High-Medium test, corresponding 

respectively to 77% and 67% of the available width. The efficiency of the widening increases 

for the large configuration, compared to the medium and small ones. Maximum width reaches 

0.40 m (2.7*Bt) for the Low-Large test and 0.34 m (2.3*Bt) for the High-Large test thus 

corresponding to the best performance in terms of percentage of available area, being 89% 

and 76% for the Low-Large and the High-Large tests respectively.  

 

Figure 7-19: Dimensionless total main flow width versus dimensionless widening length.  

On the ordinate axis, 1 denotes the entrance of the widening zone (Y=0.95 m for the small and medium 

configurations and Y=1.10 m for the large configuration) and 0 the location of the confluence 

(Y=0.50 m for all configurations). 

The lateral expansion of the tributary flow seems to be directly associated to the length of the 

widened reach. As illustrated in Figure 7-20a, the maximum percentage of the occupation of 
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the tributary flow in the widened zone is about 75%. It decreases considerably when the width 

of the widened area increases for the same length of widening (dashed lines). This behaviour 

is due to the interaction of the tributary main flow and the flow stagnation zones with the 

sediment transport, which creates different morphological zones.  

The increase of the flow expansion is obtained with the increase of the widening length 

(Lw), as denoted by the full lines in Figure 7-20a. For the low and intermediate scenarios, the 

increase is supported in part by the outer expansion of the flow whereas in the high discharge 

case, the investigated length is not sufficient to provoke an outer expansion. 

The ratio Lw/Bw also plays an important role in terms of efficiency of the tributary flow 

expansion. As illustrated in Figure 7-20b, higher efficiencies of the percentage of the flow 

occupation increase with the ratio Lw/Bw for the low and intermediate runs. However, for the 

high discharge scenarios, the increase from Lw/Bw=1.3 (Small) to Lw/Bw=1.5 (Large) seems 

not to influence the flow occupation, but in both cases, it is considerable higher than that 

observed for the ratio Lw/Bw=1.0. 

 

Figure 7-20: Percentage of the total available surface at the widening zone (Bw*Lw) occupied by the 

flow as a function of the ratios Bw/Bt (a) and Lw/Bt (b). 

Visual observations during the experiment reveal that the tributary main flow corridors are 

directly associated with the sediment transport corridors, which are responsible for the 

development of the bed morphology in the widened zones and for the transfer between the 

sediment coming from the tributary to the post-confluence channels. Figure 7-21 shows 
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pictures of the widened area at the end of the Low-Small and the High-Large tests. The two 

pictures are representative of the main morphological processes described for all experiments. 

The equilibrium condition is marked by an important narrowing and deviation of the sediment 

transport corridors as the discharge ratio increases. It precludes a sediment supply to the outer 

bank of the widened zone, which explains the absence of deposition on the outer bank of the 

zone. The re-confinement of the flow due to the presence of the confluence also influences the 

sediment transport corridors, which entrains the narrowing of the corridor near the 

downstream confluence corner.  

 

Figure 7-21: Images of the widened zone in equilibrium conditions for the test (a) Low-Reference and 

(b) High-Large. “dz” denotes the dry zones, “mfc” the tributary main flow corridors, “fsz” the flow 

stagnation zones and “sc” the sediment corridors. 

The increase of available space in the confluence zone due to the local tributary widening 

seems to facilitate the development of a natural connection between the tributary and main 

channel flows. The definition of the junction angle between the flows is not straightforward, 

however. For the present tests, an angle is defined between the centrelines of each main flow 

corridor shown in Figure 7-16 and the X-axis. As illustrated in Figure 7-22, it appears that the 

confluence angle increases with the discharge ratio and momentum flux ratio. The deflection 

angle downstream is rather similar for a given discharge and does not seem to depend on the 

configuration of the widening. 
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Figure 7-22: Angles of the confluence resulting from the investigated geometric and hydraulic 

conditions.  

7.5 Ecological potential of local tributary widening in the framework of 

rehabilitation of confluences zones 

As discussed in previous sections, the local tributary widenings are responsible for the 

development of regions characterized by a combination of flow corridors with dry and flow 

stagnation zones. In fluvial systems the presence of such as zones are extremely important for 

the habitat suitability. Dry zones are request for example for the development of the riparian 

vegetation and are common associated to the habitat of micro invertebrates (Singer and 

Dunne, 2006; Schweizer et al., 2007a; Weber et al., 2009) whereas flow stagnation zone can 

become refuge areas during flood events. Moreover, it was demonstrated that there are no 

adverse impacts due to local tributary widening on the tributary and main channel water 

levels. This is extremely important because water level raises can be catastrophic for the flood 

safety of confluence zones, putting in risk confluence rehabilitation projects.  

In fluvial systems, flow depths characteristics strongly influence the quality of habitat 

for aquatic biota (Schweizer et al., 2007b). As illustrated in Figure 7-23, the relative low 

variability of the flow depths of the channelized tributaries (reference cases) measured in the 

tributary main corridors (Figure 7-16) increases considerably with the local widening.  
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Figure 7-23: Boxplots of the flow depths measured in the tributary main flow corridors in the 

widening zone showing the median values (mid-lines), 25th and 75th percentiles (box) and the 

maximum and minimum values (extreme limits). Flow depths in the tributary between 

0.60 m<Y<1.10 m in the reference cases are used for comparison. 

The analyses of the water depths variability can also be done over the entire widening zone, 

where the dry zones and the flow stagnation zones also are taken into account. From Figure 

7-24, it is possible to see that the variability in water depths further increase when the zones 

out of the tributary main flow corridor are included.  

 

Figure 7-24: Boxplots of the water depths in the widening zone showing the median values (mid-lines), 

25th and 75th percentiles (box) and the maximum and minimum values (extreme limits). Flow depths 

in the tributary between 0.60 m<Y<1.10 m in the reference cases are used for comparison matter. 

The increased variation of the flow depths, associated to the higher variability of flow 

velocities and bed substrate discussed in section 7.4.3 show the ecological potential of a local 

tributary widening in confluence zones.  
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It is important to notice that the present experiments have been performed under 

constant water and solid discharge conditions which represents the bed-forming events of the 

tributary channel. In fluvial systems, however, the constant variations of discharges are 

fundamental elements of river ecosystems. For that reason, the lateral freedom obtained by the 

local widening and the different combinations of the main and tributary flood events further 

contributes for increasing the dynamics of confluence zones, which can be important for 

enhancing the lateral connectivity of regulated fluvial systems, such as the Upper Rhone 

basin.  

7.6 Conclusions 

Systematic experimental tests are carried out in the perspective of a research project related to 

the rehabilitation of regulated confluences found in alpine regions. Experimental conditions as 

dimensions, sediments and scenarios are based on an analysis of the main confluences of the 

Upper Rhone River, in Switzerland. This basin is currently in a poor ecological state due to 

past river training works and is being subject of a major rehabilitation project. 

In the first part of the paper, the effects of the momentum flux ratio resulting from three 

different discharge ratios were investigated for a reference configuration of a 90º confluence 

without a widening of the tributary mouth. With the increase of the momentum flux ratio, the 

following morphological behaviours can be highlighted: 1) the discordance between the 

tributary and main channel decreases; 2) the penetration of the tributary into the main channel 

decreases and 3) and the volume of the deposition bar is smaller. Moreover, a significant grain 

sorting can be observed at the confluence zone. Coarse material is found on the avalanche 

faces, while finer one are encountered at the separation zone.  

Although the morphology of the confluence zone is highly responsive to changes in the 

discharge and momentum flux ratios, the results presented in this work allows the validation 

of the conceptual model concerning the main hydro-morpho-sedimentary processes of 

confluences with relative low discharge and momentum flux ratios and high sediment 

delivery ratio proposed in Chapter 5. 

In the second part of the paper, the influence of different three local tributary widening 

for three discharge scenarios has been investigated in the framework of confluence 

rehabilitation projects. It has been shown that these relative small interventions can increase 

the variability of water depths, flow velocities and bed material substrate in confluence zones. 
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These hydraulic and morphological conditions are potentially important for the re-

establishment of diverse natural riparian ecosystems, and to restore the fluvial systems that 

were degraded by river training works. Results of this research demonstrate the complexity of 

the morphodynamic responses to a given widening configuration. It depends on the 

momentum flux ratio and on the shape and dimensions of the widening. For all cases, some 

parts of the widened space are not used by the flow at equilibrium conditions. These areas are 

either completely filled by fine sediments or occupied by stagnating flows.  

Finally, the different tributary widening configurations tested in this research did not 

cause major consequences for the morphodynamics neither in the tributary channel upstream 

of the widening nor in the post-confluence channels for a given discharge scenario. It is 

important to notice that in the experiments, the solid discharge introduced in the tributary 

corresponds exactly to its transport capacity (equilibrium conditions) and the above 

statements only concern this situation. In these conditions, local tributary widening can be 

powerful in increasing the ecological potential of fluvial systems without reducing the 

conveyance capacity of a given network. 
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8. General conclusions and future research 

 





Chapter 8: General conclusions and future research 

159 

8.1 Challenges of alpine confluences 

Alpine confluences are characterized by small steep tributaries with a high supply of poorly 

sorted sediment during channel-forming flood events. Their morphology is characterized by 

pronounced bed discordance at the tributary mouth and the formation of a significant 

deposition bar downstream of the confluence. The current knowledge on the morphodynamics 

of river channel confluences, mainly based on lowland confluences is not applicable to these 

conditions. Low values of discharge and momentum flux ratios, associated to the important 

sediment loads supplied by the tributary can, in part, explain the non-applicability of the 

existing knowledge. 

In regulated systems, the tributaries are often channelized and characterized by 

monotonous linear profiles with a lack of structural diversity, i.e. gravel banks, islands, 

woody debris, riffles or pools. River training works resulted in an impoverishment of the 

fluvial ecosystems. Confluences are the nodes of the river networks and hence they are critical 

points to be considered in rehabilitation projects. Regulated alpine confluences present 

important challenges, not only for rehabilitation projects but also because of the continuous 

increase of the flood risks due to urbanization.  

In the present research project, the morphodynamics of confluences such as found in 

alpine environments were investigated for the first time. Laboratory investigation of the main 

hydro-morpho-sedimentary processes for different discharge and momentum flux ratios 

allowed gaining insight in the interactions and feedback mechanisms between these processes. 

Furthermore, the ecological potential of local tributary widening in the framework of 

confluence rehabilitation projects was investigated and its influence on the flow dynamics, 

sediment transport and bed morphology was examined. The reported study was based on 

systematic laboratory experiments performed under live bed conditions in a configuration that 

is representative of typical regulated alpine confluences as they can be found in the Upper 

Rhone River, Switzerland.  
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8.2 Main results 

8.2.1 Hydro-morpho-sedimentary processes in channel confluences 

Measurements of the three-dimensional velocity field, turbulence, sediment transport, bed 

material grain size and morphology in the confluence flume at equilibrium conditions 

revealed that the hydro-morpho-sedimentary processes occurring in confluences with alpine 

characteristics differ fundamentally from existing conceptual models of confluence 

morphodynamics. Therefore, a conceptual model for the main hydraulic and morphological 

processes in confluences with low discharge and momentum flux ratio and high sediment 

delivery ratio was proposed and validated by means of twelve experimental tests with 

different discharge ratios as well as field observations at the Rhone River confluences. The 

model can be considered as an extension of the Best’s work to bed discordant confluences 

with hydro-sedimentary characteristics not yet considered.  

The difference between the low flow depth in the steep tributary and the higher flow 

depth in the main channel explains the presence of bed discordance in channel confluences. 

Due to this bed discordance, the tributary flow penetrates into the main channel mainly in the 

upper part of the water column, whereas the main-channel flow is hardly hindered by the 

tributary in the lower part of the water column, giving rise to a two-layer flow structure at the 

tributary mouth. In confluences with high sediment supply from the tributary, the 

development of a deposition bar downstream from the confluence reduces the flow area and 

causes a flow acceleration that contributes to the required increase in sediment transport 

capacity. The sediment supplied by the tributary is mainly sorted and transported on the face 

of the deposition bar. The sediment transport capacity is further increased by the three-

dimensionality of the flow, which is characterized by maximum velocities occurring near the 

bed. Furthermore, a significant increase in turbulent kinetic energy is generated in the shear 

layer at the interface of the flows originating from the main channel and the tributary. With 

the increase of the momentum flux ratio, the following morphological behaviours can be 

highlighted: 1) the discordance between the tributary and main channel decreases; 2) the 

penetration of the tributary into the main channel decreases and 3) the volume of the 

deposition bar decreases.  
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8.2.2 Effects of tributary widening 

The effects of local tributary widening in the framework of confluence rehabilitation projects  

was assessed by investigations of three different widening configurations under three different 

steady discharge scenarios. Local tributary widening considerably influences the 

morphodynamics in the confluence zone and increase the heterogeneity in bed topography, 

water depth, flow velocity and particle size distribution. These hydraulic and morphological 

conditions are potentially important for the re-establishment of diverse natural riparian 

ecosystems, and the restoration of fluvial systems that were degraded by river training works. 

The lateral freedom obtained by the local widening associated to the different combinations of 

the main and tributary discharge events further allows the formation of different bed forms, 

which contributes to the improvement of the lateral connectivity of regulated networks.  

Local tributary widening was found to amplify the hydro-morpho-sedimentary 

processes in the confluence zone, but without altering them fundamentally. The local 

interventions represented by the tributary widening do not promote adverse effects in terms of 

the conveyance capacity and the flood safety in equilibrium conditions.  

8.3 Future research 

Laboratory experiments are inherently limited to a relatively small number of configurations 

that only partially cover the relevant parameter space. Moreover, they are limited to 

schematized and simplified conditions. The reported experiments, for example, only 

investigated tributaries that join the main channel at 90° angle. Furthermore, it only 

investigated equilibrium conditions under steady flow and sediment conditions. The 

performed laboratory experiments can be considered as the first important step in research on 

alpine confluences. Knowledge on the hydro-morpho-sedimentary processes in these settings 

may be further increased by means of a combination of laboratory, field and numerical 

investigations.  

Laboratory investigations 

Further laboratory investigations could have the purpose: 

• To broaden the investigated parameter space, and especially the flow and sediment 

discharges in the main channel and the tributary, the sediment characteristics, the 

confluence angles, the channel widths; 
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• To investigate the hydro-morpho-sedimentary dynamics under time-variable conditions 

of flow and sediment discharges in order to mimic the effects of flood events occurring 

in the main channel and/or the tributary. 

• To investigate different configurations of tributary widening. Preliminary tests in the 

present experimental set-up considering asymmetric widening have been done in the 

framework a Master project at LCH (Bidaud, 2010). However, in order to be 

conclusive, the investigation should be done systematically. 

• To investigate the influence of main channel widening on the morphodynamics of 

confluence zones. 

Numerical simulations 

Currently, the available morphodynamic numerical codes are not able to simulate accurately 

the bed evolution of channel confluences (Bidaud, 2011). In addition, the application of 

numerical models to confluence zones still suffers of the lack of experimental data for model 

validation. The detailed experimental data on the three-dimensional flow field, turbulence, 

sediment transport, bed material grain size and morphology provided by the performed 

laboratory experiments constitute benchmark data for the validation of morphodynamic 

numerical models. Validated models may be useful for research (broadening of the parameter 

space) and river management (design of river rehabilitation schemes). 

Field investigations 

The existing knowledge on the morphodynamics of river confluences is mainly based on field 

investigations on two small lowland river confluences. In order to further validate the results 

presented in this research project, field investigations on channel confluences is required. In 

the choice of the site, the most important characteristics to be taken into account are: (i) low 

discharge and momentum flux ratios; (ii) important poorly-sorted sediment supply by the 

tributary during bed-forming events and (iii) bed discordance between the tributary and main 

channels. A first step could be the monitoring of the discharges and the morphological 

evolution in the confluence zone.  

Concerning the application of the local tributary widening at confluence zones in the 

framework of river rehabilitation projects, the ecological evolution in addition to the 

morphological changes after the rehabilitation should be monitored.  
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Notation 

Roman lower cases 

d Characteristic grain size diameter [mm] 

d50 Median grain size diameter [mm] 

dm Average grain size diameter [mm] 

ds Scour depth [m] 

g Gravitational acceleration [ms-2] 

h Local flow depth  [m] 

ks Characteristic particle size [mm] 

n Manning coefficient [sm-1/3] 

t time [h] 

tke Turbulent kinetic energy [-] 

u* Characteristic shear velocity [ms-1] 

uj time-averaged local velocity component along j-direction [ms-1] 

u'j velocity fluctuations [ms-1] 

Roman capital 

B Channel width [m] 

Bw Widening width [m] 

Cf Chézy friction coefficient [-] 

Es Energy gradient [-] 

Fg Densimetric Froude Number [-] 

Fr Froude Number  [-] 

Gs Specific gravity [-] 

H Width-averaged flow depth [m] 

Lr Reattachment length [m] 

Lw Tributary widening length [m] 

Mr Momentum flux ratio [-] 

Q Discharge [m3s-1] 

Qr Discharge ratio [-] 

Qs Solid discharge [kg min-1] 

Re* Particle Reynolds number [-] 

Rh Hydraulic radius [m] 

S Bed slope [-] 

U Globally averaged velocity (Q/(BH) [ms-1] 
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Greek symbols 

v Kinematic viscosity [m2s-1] 

α Confluence angle [°] 

ρ Water density  [kg m-3] 

ρs Sediment density [kg m-3] 

σ Gradation coefficient  [-] 

τb Bed shear stress [Nm-2] 

Subscripts 

t tributary channel 

m main channel 

p-c post-confluence channel 

2 Two years return period 

5 5 years return period 

x,y,z Longitudinal, transversal and vertical directions 

 

Acronyms 

ADVP Acoustic Doppler Velocity Profiler 

EAWAG Swiss Federal Institute of Aquatic Science and Technology 

EPFL Ecole Polytechnique Fédérale de Lausanne, Switzerland 

ETHZ Swiss Federal Institute of Technology Zurich 

FOEN Federal Office for the Environment 

LCH Laboratory of Hydraulic Constructions 

SSIIM Sediment Simulation in Intakes with Multiblock Option 

VAW Laboratory of Hydraulics, Hydrology and Glaciology 

WSL Swiss Federal Institute for Forest, Snow and Landscape 

mfc Main flow corridor 

dz Dry zone 

fsz Flow stagnation zone 
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A. Low-Reference 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

Windening

- -

0.30 0.45

0.45 0.45

0.45 0.60
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A.1 Summary 

A.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 18 2 0.11

Qs  [kg/m3] - 0.3  

A.1.3 Main morphological features 

0.090 [m]

0.096 [m]

0.024 [m3]Volume > elevation 0.02 m

Bed discordance

Maximum deposition

 

A.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.105 0.109 0.110

0.5 0.109 0.107 0.113

1.2 0.096 0.599 0.019

3.2 0.076 0.053 0.037

X  [m]

0.6

Average [0.5<Y <3.5m]

0.02

Main and post-confluence channels

Tributary channel

 

A.2 Time-evolution of the bed elevations 

 

Figure 1: Bed elevations measured in the flume at t=1h 
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Figure 2: Bed elevations measured in the flume at t=18h 

 

Figure 3: Bed elevations measured in the flume at t=21h 
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Figure 4: Bed elevations measured in the flume at t=23h 
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A.3 Longitudinal profiles 

A.3.1 Main, post-confluence and tributary channels 

 

Figure 5: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) 

(d) showing the bed elevations and water levels measured in different time-steps 
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A.4 Flow visualization of the main and post-confluence channels 

 

Figure 6: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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A.5 Pictures of the confluence zone 

 

Figure 7: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. b) 

Upper view of the confluence zone, c) Upstream view of the tributary and d) Downstream view of the 

post- confluence channel 

A.6 Grain size distributions 

 

Figure 8: Sample locations and their respective grain size distributions 
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B. Intermediate-Reference 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.45

0.45 0.60

- -

0.30 0.45

Windening

 





Appendix B – Intermediate - Reference 

191 

B.1 Summary 

B.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 17.4 2.6 0.15

Qs  [kg/m3] - 0.3  

B.1.3 Main morphological features 

0.078 [m]

0.082 [m]

0.026 [m3]Volume > elevation 0.02 m

Bed discordance

Maximum deposition

 

B.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.106 0.106 0.103

0.5 0.109 0.109 0.106

1.2 0.098 0.055 0.324

3.2 0.083 0.061 0.036

X  [m]

0.6

Average [0.5<Y <3.5m]

0.026

Main and post-confluence channels

Tributary channel

 

B.2 Time-evolution of the bed elevations 

 

Figure 9: Bed elevations measured in the flume at t=1h 
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Figure 10: Bed elevations measured in the flume at t=4h 

 

Figure 11: Bed elevations measured in the flume at t=11h 
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Figure 12: Bed elevations measured in the flume at t=15h 

 

Figure 13: Bed elevations measured in the flume at t=19h 
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Figure 14: Bed elevations measured in the flume at t=23h 



Appendix B – Intermediate - Reference 

195 

B.3 Longitudinal profiles  

B.3.1 Main, post-confluence and tributary channels 

 

Figure 15: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) 

(d) showing the bed elevations and water levels measured in different time-steps 
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B.4 Flow visualization of the main and post-confluence channels 

 

Figure 16: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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B.5 Pictures of the confluence zone 

 

Figure 17: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the confluence zone, c) Upstream view of the tributary and d) Upstream view of the 

post- confluence channel 

B.6 Grain size distributions 

 

Figure 18: Sample locations and their respective grain size distributions 
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C. High-Reference 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.60

0.30 0.45

0.45 0.45

Windening

- -
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C.1 Summary 

C.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 16.3 3.7 0.23

Qs  [kg/m3] - 0.3  

C.1.3 Main morphological features 

0.072 [m]

0.070 [m]

0.019 [m3]

Maximum deposition

Volume > elevation 0.02 m

Bed discordance

 

C.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.116 0.110 0.111

0.5 0.117 0.116 0.068

1.2 0.115 0.059 0.039

3 0.083 0.062 0.039

X  [m]

0.6 0.04

Average [0.5<Y <3.5m]

Main and post-confluence channels

Tributary channel

 

C.2 Time-evolution of the bed elevations 

 

Figure 19: Bed elevations measured in the flume at t=1h 
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Figure 20: Bed elevations measured in the flume at t=8h 

 

Figure 21: Bed elevations measured in the flume at t=17h 
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Figure 22: Bed elevations measured in the flume at t=21h 

 

Figure 23: Bed elevations measured in the flume at t=24h 
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C.3 Longitudinal profiles  

C.3.1 Main, post-confluence and tributary channels 

 

Figure 24: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) 

(d) showing the bed elevations and water levels measured in different time-steps 
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C.4 Flow visualization of the main and post-confluence channels 

 

Figure 25: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 

 

C.5 Pictures of the confluence zone 

 

Figure 26: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the confluence zone, c) Upstream view of the tributary and d) Downstream view of 

the post- confluence channel 
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C.6 Grain size distributions 

 

Figure 27: Sample locations and their respective grain size distributions 
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D. Low-Small 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.45

0.45 0.60

- -

0.30 0.45

Windening
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D.1 Summary 

D.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 18 2 0.11

Qs  [kg/m3] - 0.3  

D.1.3 Main morphological features 

0.097 [m]

0.101 [m]

0.022 [m3]

Bed discordance

Maximum deposition

Volume > elevation 0.02 m  

D.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.114 0.114 0.122

0.5 0.113 0.111 0.119

1.2 0.102 0.064 0.007

3 0.073 0.051 0.043

X  [m]

0.6

* only widened zone.

Average [0.5<Y <0.90m] *

0.014

Main and post-confluence channels

Tributary channel

 

D.2 Time-evolution of the bed elevations 

 

Figure 28: Bed elevations measured in the flume at t=1h 
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Figure 29: Bed elevations measured in the flume at t=18h 

 

Figure 30: Bed elevations measured in the flume at t=20h 
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Figure 31: Bed elevations measured in the flume at t=22h 
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D.3 Longitudinal profiles and cross-sections 

D.3.1 Main, post-confluence and tributary channels 

 

Figure 32: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 



Appendix D – Low - Small 

213 

D.3.2 Widened zone 

  

  

Figure 33: Cross-sections in the widened zone at: X=0.50 , X=0.72 m, Y=0.54 m and Y=0.64 m 

D.4 Flow visualization of the main and post-confluence channels 

 

Figure 34: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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D.5 Pictures of the confluence zone 

 

Figure 35: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the tributary and d) Upper view of the 

confluence zone 

D.6 Grain size distributions 

 

Figure 36: Sample locations and their respective grain size distributions 
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E. Intermediate-Small 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.60

0.30 0.45

0.45 0.45

Windening

- -
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E.1 Summary 

E.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 17.4 2.6 0.15

Qs  [kg/m3] - 0.3  

E.1.3 Main morphological features 

0.097 [m]

0.101 [m]

0.020 [m3]Volume > elevation 0.02 m

Bed discordance

Maximum deposition

 

E.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.109 0.105 0.103

0.5 0.112 0.111 0.111

1.2 0.104 0.050 0.000

3 0.071 0.059 0.050

X  [m]

0.6

* only widened zone.

0.015

Main and post-confluence channels

Tributary channel

Average [0.5<Y <0.90m] *

 

E.2 Time-evolution of the bed elevations 

 

Figure 37: Bed elevations measured in the flume at t=1h 
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Figure 38: Bed elevations measured in the flume at t=20h 

 

Figure 39: Bed elevations measured in the flume at t=22h 
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Figure 40: Bed elevations measured in the flume at t=24h 
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E.3 Longitudinal profiles and cross-sections 

E.3.1 Main, post-confluence and tributary channels 

 

Figure 41: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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E.3.2 Widened zone 

  

  

Figure 42: Cross-sections in the widened zone at: X=0.50 , X=0.72 m, Y=0.54 m and Y=0.64 m 

E.4 Flow visualization of the main and post-confluence channels 

 

Figure 43: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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E.5 Pictures of the confluence zone 

 

Figure 44: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the tributary and d) Upper view of the 

confluence zone 

E.6 Grain size distributions 

 

Figure 45: Sample locations and their respective grain size distributions 
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F. High-Small 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.45

0.45 0.60

- -

0.30 0.45

Windening
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F.1 Summary 

F.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 16.3 3.7 0.23

Qs  [kg/m3] - 0.3  

F.1.3 Main morphological features 

0.065 [m]

0.068 [m]

0.015 [m3]

Bed discordance

Maximum deposition

Volume > elevation 0.02 m  

F.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.104 0.102 0.103

0.5 0.106 0.102 0.099

1.2 0.091 0.064 0.042

3 0.075 0.063 0.035

X  [m]

0.6

* only widened zone.

Average [0.5<Y <0.90m] *

0.039

Main and post-confluence channels

Tributary channel

 

F.2 Time-evolution of the bed elevations 

 

Figure 46: Bed elevations measured in the flume at t=1h 
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Figure 47: Bed elevations measured in the flume at t=16h 

 

Figure 48: Bed elevations measured in the flume at t=20h 
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Figure 49: Bed elevations measured in the flume at t=22h 



Appendix F – High - Small 

228 

F.3 Longitudinal profiles and cross-sections 

F.3.1 Main, post-confluence and tributary channels 

 

Figure 50: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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F.3.2 Cross-sections in the widened zone 

  

  

Figure 51: Cross-sections in the widened zone at: X=0.50 , X=0.72 m, Y=0.54 m and Y=0.64 m 

F.4 Flow visualization of the main and post-confluence channels 

 

Figure 52: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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F.5 Pictures of the confluence zone 

 

Figure 53: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the tributary and d) Upper view of the 

confluence zone 

F.6 Grain size distributions 

 

Figure 54: Sample locations and their respective grain size distributions 



 

231 

G. Low-Medium 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.60

0.30 0.45

0.45 0.45

Windening

- -

 





Appendix G – Low - Medium 

233 

G.1 Summary 

G.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 18 2 0.11

Qs  [kg/m3] - 0.3  

G.1.3 Main morphological features 

0.091 [m]

0.099 [m]

0.021 [m3]Volume > elevation 0.02 m

Bed discordance

Maximum deposition

 

G.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.109 0.106 0.104

0.5 0.108 0.106 0.104

1.2 0.097 0.065 0.007

3 0.079 0.058 0.044

X  [m]

0.6

* only widened zone.

Average [0.5<Y <0.90m] *

0.015

Main and post-confluence channels

Tributary channel

 

G.2 Time-evolution of the bed elevations 

 

Figure 55: Bed elevations measured in the flume at t=1h 
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Figure 56: Bed elevations measured in the flume at t=16h 

 

Figure 57: Bed elevations measured in the flume at t=20h 
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Figure 58: Bed elevations measured in the flume at t=22h 
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G.3 Longitudinal profiles and cross-sections 

G.3.1 Main, post-confluence and tributary channels 

 

Figure 59: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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G.3.2 Widened zone 

  

  

Figure 60: Cross-sections in the widened zone at: X=0.44 , X=0.76 m, Y=0.54 m and Y=0.64 m 

G.4 Flow visualization of the main and post-confluence channels 

 

Figure 61: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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G.5 Pictures of the confluence zone 

 

Figure 62: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) View of the upstream avalanche faces and d) Upper view of the 

confluence zone 

G.6 Grain size distributions 

 

Figure 63: Sample locations and their respective grain size distributions 
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H. Intermediate - Medium 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.45

0.45 0.60

- -

0.30 0.45

Windening

 





Appendix H – Intermediate - Medium 

241 

H.1 Summary 

H.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 17.4 2.6 0.15

Qs  [kg/m3] - 0.3  

H.1.3 Main morphological features 

0.091 [m]

0.096 [m]

0.018 [m3]Volume > elevation 0.02 m

Bed discordance

Maximum deposition

 

H.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.109 0.106 0.104

0.5 0.109 0.106 0.105

1.2 0.096 0.070 0.011

3 0.068 0.055 0.053

X  [m]

0.6

* only widened zone.

0.02

Tributary channel

Average [0.5<Y <0.90m] *

Main and post-confluence channels

 

H.2 Time-evolution of the bed elevations 

 

Figure 64: Bed elevations measured in the flume at t=1h 
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Figure 65: Bed elevations measured in the flume at t=16h 

 

Figure 66: Bed elevations measured in the flume at t=20h 
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Figure 67: Bed elevations measured in the flume at t=22h 
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H.3 Longitudinal profiles and cross-sections 

H.3.1 Main, post-confluence and tributary channels 

 

Figure 68: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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H.3.2 Widened zone 

  

  

Figure 69: Cross-sections in the widened zone at: X=0.44 , X=0.76 m, Y=0.54 m and Y=0.64 m 

H.4 Flow visualization of the main and post-confluence channels 

 

Figure 70: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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H.5 Pictures of the confluence zone 

 

Figure 71: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) View of the downstream corner of the confluence zone and d) 

View of the upstream avalanche faces 

H.6 Grain size distributions 

 

Figure 72: Sample locations and their respective grain size distributions 
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I. High-Medium 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.60

0.30 0.45

0.45 0.45

Windening

- -
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I.1 Summary 

I.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 16.3 3.7 0.23

Qs  [kg/m3] - 0.3  

I.1.3 Main morphological features 

0.069 [m]

0.075 [m]

0.021 [m3]Volume > elevation 0.02 m

Bed discordance

Maximum deposition

 

I.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.111 0.107 0.104

0.5 0.113 0.108 0.107

1.2 0.098 0.063 0.039

3 0.077 0.057 0.034

X  [m]

0.6

* only widened zone.

Average [0.5<Y <0.90m] *

0.044

Main and post-confluence channels

Tributary channel

 

I.2 Time-evolution of the bed elevations 

 

Figure 73: Bed elevations measured in the flume at t=1h 
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Figure 74: Bed elevations measured in the flume at t=16h 

 

Figure 75: Bed elevations measured in the flume at t=20h 
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Figure 76: Bed elevations measured in the flume at t=22h 
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I.3 Longitudinal profiles and cross-sections 

I.3.1 Main, post-confluence and tributary channels 

 

Figure 77: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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I.3.2 Widened zone 

  

  

Figure 78: Cross-sections in the widened zone at: X=0.44 , X=0.76 m, Y=0.54 m and Y=0.64 m 

I.4 Flow visualization of the main and post-confluence channels 

 

Figure 79: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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I.5 Pictures of the confluence zone 

 

Figure 80: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the avalanche faces and d) Downstream view 

of the post-confluence channel 

I.6 Grain size distributions 

 

Figure 81: Sample locations and their respective grain size distributions 
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J. Low-Large 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.45

0.45 0.60

- -

0.30 0.45

Windening
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J.1 Summary 

J.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 18 2 0.11

Qs  [kg/m3] - 0.3  

J.1.3 Main morphological features 

0.097 [m]

0.094 [m]

0.020 [m3]

Maximum deposition

Volume > elevation 0.02 m

Bed discordance

 

J.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.109 0.105 0.108

0.5 0.105 0.102 0.092

1.2 0.100 0.075 0.005

3 0.079 0.061 0.035

X [m]

0.6

* only widened zone.

0.005

Tributary channel

Average [0.5<Y <1.10m] *

Main and post-confluence channels

 

J.2 Time-evolution of the bed elevations 

 

Figure 82: Bed elevations measured in the flume at t=1h 
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Figure 83: Bed elevations measured in the flume at t=16h 

 

Figure 84: Bed elevations measured in the flume at t=20h 
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Figure 85: Bed elevations measured in the flume at t=22h 
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J.3 Longitudinal profiles and cross-sections 

J.3.1 Main, post-confluence and tributary channels 

 

Figure 86: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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J.3.2 Widened zone 

  

  

Figure 87: Cross-sections in the widened zone at: X=0.44 , X=0.76 m, Y=0.54 m and Y=0.64 m 

J.4 Flow visualization of the main and post-confluence channels 

 

Figure 88: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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J.5 Pictures of the confluence zone 

 

Figure 89: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the avalanche faces and d) Downstream view 

of the post-confluence channel 

J.6 Grain size distributions 

 

Figure 90: Sample locations and their respective grain size distributions  
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K. Intermediate-Large 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.60

0.30 0.45

0.45 0.45

Windening

- -
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K.1 Summary 

K.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 17.4 2.6 0.15

Qs  [kg/m3] - 0.3  

K.1.3 Main morphological features 

0.100 [m]

0.110 [m]

0.024 [m3]

Bed discordance

Maximum deposition

Volume > elevation 0.02 m  

K.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.110 0.110 0.109

0.5 0.110 0.109 0.105

1.2 0.108 0.063 0.007

3 0.079 0.058 0.038

X  [m]

0.6

* only widened zone.

Average [0.5<Y <1.10m] *

0.0063

Main and post-confluence channels

Tributary channel

 

K.2 Time-evolution of the bed elevations 

 

Figure 91: Bed elevations measured in the flume at t=1h 
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Figure 92: Bed elevations measured in the flume at t=16h 

 

Figure 93: Bed elevations measured in the flume at t=20h 
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Figure 94: Bed elevations measured in the flume at t=22h 



Appendix K – Intermediate - Large 

268 

K.3 Longitudinal profiles and cross-sections 

K.3.1 Main, post-confluence and tributary channels 

 

Figure 95: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps 
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K.3.2 Widened zone 

  

  

Figure 96: Cross-sections in the widened zone at: X=0.44 , X=0.76 m, Y=0.54 m and Y=0.64 m 

K.4 Flow visualization of the main and post-confluence channels 

 

Figure 97: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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K.5 Pictures of the confluence zone 

 

Figure 98: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the avalanche faces and d) Upstream view of 

the tributary 

K.6 Grain size distributions 

 

Figure 99: Sample locations and their respective grain size distributions 
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L. High-Large 

Appendix Test Qr B w L w

A Low-Reference 0.11

B Intermediate-Reference 0.15

C High-Reference 0.20

D Low-Small 0.11

E Intermediate-Small 0.15

F High-Small 0.20

G Low-Medium 0.11

H Intermediate-Medium 0.15

I High-Medium 0.20

J Low-Large 0.11

K Intermediate-Large 0.15

L High-Large 0.20

0.45 0.45

0.45 0.60

- -

0.30 0.45

Windening
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L.1 Summary 

L.1.1 Initial hydraulic conditions 

Main (m ) Tributary (t ) Qr (Q t /Q m )

Q  [ l/s] 16.3 3.7 0.23

Qs  [kg/m3] - 0.3  

L.1.3 Main morphological features 

0.089 [m]

0.100 [m]

0.022 [m3]Volume > elevation 0.02 m

Maximum deposition

Bed discordance

 

L.1.2 Equilibrium flow depths 

X\Y  [m] 0.05 0.25 0.45

0 0.110 0.108 0.106

0.5 0.109 0.107 0.103

1.2 0.107 0.066 0.010

3 0.057 0.063 0.055

X  [m]

0.6

* only widened zone.

0.028

Main and post-confluence channels

Tributary channel

Average [0.5<Y <1.10m] *

 

L.2 Time-evolution of the bed elevations 

 

Figure 100: Bed elevations measured in the flume at t=1h 
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Figure 101: Bed elevations measured in the flume at t=16h 

 

Figure 102: Bed elevations measured in the flume at t=20h 
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Figure 103: Bed elevations measured in the flume at t=22h 
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L.3 Longitudinal profiles and cross-sections 

L.3.1 Main, post-confluence and tributary channels 

 

Figure 104: Longitudinal profiles along the main and post-confluence channels at Y=0.05 m (a), 

Y=0.25 m (b) and Y=0.45 m (c) and longitudinal profile along the axis of the tributary (X=0.60 m) (d) 

showing the bed elevations and water levels measured in different time-steps; 
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L.3.2 Widened zone 

  

  

Figure 105: Cross-sections in the widened zone at: X=0.44 , X=0.76 m, Y=0.54 m and Y=0.64 m 

L.4 Flow visualization of the main and post-confluence channels 

 

Figure 106: Upper view of the main and post-confluence channels with colour dye injected in the 

tributary 
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L.5 Pictures of the confluence zone 

 

Figure 107: Pictures of the confluence zone. a) Upper view of the main and post-confluence channels. 

b) Upper view of the widened zone, c) Upstream view of the avalanche faces and d) Upper view of the 

confluence zone 

L.6 Grain size distributions 

 

Figure 108: Sample locations and their respective grain size distributions 
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